DeTS cac tinh mon Toan_2009-2010

Chia sẻ bởi Đỗ Thị Lựu | Ngày 12/10/2018 | 25

Chia sẻ tài liệu: DeTS cac tinh mon Toan_2009-2010 thuộc Ngữ văn 9

Nội dung tài liệu:

SỞ GIÁO DỤC VÀ ĐÀO TẠO KÌ THI TUYỂN SINH LỚP 10 THPT
KHÁNH HÒA NĂM HỌC 2009 – 2010
Môn: TOÁN
ĐỀ CHÍNH THỨC Khóa ngày 19.6.2009
Thời gian làm bài: 120 phút (không kể thời gian giao đề)

Bài 1: (2.00 điểm) (Không dùng máy tính cầm tay)
Cho biết  và . Hãy so sánh: A + B và tích A.B
Giải hệ phương trình: 
Bài 2: (2.50 điểm)
Cho Parabol (P): y = x2 và đường thẳng (d): y = mx – 2 ( m là tham số, m ( 0)
Vẽ đồ thị (P) trên mặt phẳng toạ độ Õy.
Khi m = 3, tìm toạ độ giao điểm của (P) và (d).
Gọi A(xA; yA), B(xB;yB) là hai giao điểm phân biệt của (P) và (d). Tìm các giá trị của m sao cho: yA + yB = 2(xA + xB) – 1.
Bài 3: (1.50 điểm)
Một mảnh đất hình chữ nhật có chiều dài hơn chiều rộng 6m và bình phương độ dài đường chéo gấp 5 lần chu vi. Xác định chiều dài và chiều rộng hình chữ nhật.
Bài 4: (1.50 điểm)
Cho đường tròn (O;R). Từ một điểm M ở ngoài (O;R) vẽ hai tiếp tuyến MA, MB (A, B là các tiếp điểm) . Lấy một điểm C trên cung nhỏ AB (C khác A và B). Gọi D, E, F lần lượt là hình chiếu vuông góc của C trên AB, AM, BM.
Chứng minh AECD là một tứ giác nội tiếp.
Chứng minh: .
Gọi I là giao điểm của AC và DE; K là giao điểm của BC và DF. Chứng minh: IK//AB.
Xác nhận vị trí điểm C trên cung nhỏ AB để (AC2 + CB2) nhỏ nhất. Tính giá trị nhỏ nhất đó khi OM = 2R.

----------------- HẾT -----------------

Đề thi này có 01 trang
Giám thị không giải thích gì thêm.


SỞ GIÁO DỤC VÀ ĐÀO TẠO KÌ THI TUYỂN SINH LỚP 10 THPT
HÀ NỘI NĂM HỌC 2009 – 2010
Môn: TOÁN
ĐỀ CHÍNH THỨC Khóa ngày 24.6.2009
Thời gian làm bài: 120 phút (không kể thời gian giao đề)
Câu I(2,5đ):
Cho biểu thức A = , với x ≥ 0 và x ≠ 4.
1/ Rút gọn biểu thức A.
2/ Tính giá trị của biểu thức A khi x = 25.
3/ Tìm giá trị của x để A = -1/3.
Câu II (2,5đ): Giải bài toán bằng cách lập phương trình hoặc hệ phương trình:
Hai tổ sản xuất cùng may một loại áo. Nếu tổ thứ nhất may trong 3 ngày, tổ thứ hai may trong 5 ngày thì cả hai tổ may được 1310 chiếc áo. Biết rằng trong một ngày tổ thứ nhất may được nhiều hơn tổ thứ hai là 10 chiếc áo. Hỏi mỗi tổ trong một ngày may được bao nhiêu chiếc áo?
Câu III (1,0đ):
Cho phương trình (ẩn x): x2 – 2(m+1)x + m2 +2 = 0
1/ Giải phương trình đã cho khi m = 1.
2/ Tìm giá trị của m để phương trình đã cho có nghiệm phân biệt x1, x2 thoả mãn hệ thức

Câu IV(3,5đ):
Cho đường tròn (O;R) và điểm A nằm bên ngoài đường tròn. Kẻ tiếp tuyến AB, AC với đường tròn (B, C là các tiếp điểm).
1/ Chứng minh ABOC là tứ giác nội tiếp.
2/ Gọi E là giao điểm của BC và OA. Chứng minh BE vuông góc với OA và OE.OA = R2.
3/ Trên cung nhỏ BC của đường tròn (O;R) lấy điểm K bất kỳ (K khác B và C). Tiếp tuyến tại K của đường tròn (O;R) cắt AB, AC theo thứ tự tại P, Q. Chứng minh tam giác APQ có chu vi không đổi khi K chuyển động trên cung nhỏ BC.
4/ Đường thẳng qua O và vuông góc với OA cắt các đường thẳng AB, AC theo thứ tự tại các điểm M, N. Chứng minh PM + QN ≥ MN.
Câu V(0,5đ): Giải phương trình: 
----------------- HẾT -----------------
SỞ GIÁO DỤC VÀ ĐÀO TẠO KÌ THI TUYỂN SINH LỚP 10 THPT
TP HỒ CHÍ MINH NĂM HỌC 2009 – 2010
Môn: TOÁN
* Một số tài liệu cũ có thể bị lỗi font khi hiển thị do dùng bộ mã không phải Unikey ...

Người chia sẻ: Đỗ Thị Lựu
Dung lượng: 395,50KB| Lượt tài: 0
Loại file: doc
Nguồn : Chưa rõ
(Tài liệu chưa được thẩm định)