De thj hoc sjnh gjoj lop 8 shinichi
Chia sẻ bởi Lê Ngọc Lâm |
Ngày 13/10/2018 |
42
Chia sẻ tài liệu: de thj hoc sjnh gjoj lop 8 shinichi thuộc Đại số 8
Nội dung tài liệu:
ĐỀ THI HỌC SINH GIỎI 8
Đề 1
Bài 1: Trên cạnh AB
Đề 2
Bài 1 Rút gọn biểu thức:
A=
Bài 2 Giải phương trình a) b)
Bài 3 Cho a,b,c thỏa mãn ab+bc+ac=4
chứng minh rằng: a2+b2+c2 lớn hơn hoặc bằng 4
Bài 4 cho tam giác ABC vuông tại A (AC>AB),đường cao AH . Trong nửa mặt phẳng bờ AH có chứa C vẽ hình vuông AHKE. gọi P là giao điểm của AC và KE a)tính các góc của tam giác ABP b)gọi Q là đỉnh thứ tư của hình bình hành APQB, gọi I là giao điểm của BP và QA.cm H,I,K thẳng hàng c)Gọi F là giao điểm AK và HE. cm AI.AK=AF.AQ
Đề 3
Bài 1:Cho đa thức P(x)= 2x4-7x3-2x2+13x+6 1) Phân tích P(x) thành nhân tử 2) Chứng minh rằng P(x) chia hết cho 6 với mọi x thuộc Z Bài 2: Cho hình bình hành ABCD (AC>BD). Vẽ CE vuông góc với AB và CF vuông góc với AD. Chứng minh rằng: AB.AE+AD.AF= Bài 3: Cho phân thức F(x)= 1) Rút gọn phân thức 2) Xác định x để phân thức có giá trị nhỏ nhất Bài 4: Cho tam giác vuông ABC, cạnh huyền BC bằng 289 và đường cao AH bằng 120. Tính hai cạnh AB và AC Bài 5:Cho 3 số dương a,b,c 1)C/m: >9 2) Giải phương trình:
Đề 1
Bài 1: Trên cạnh AB
Đề 2
Bài 1 Rút gọn biểu thức:
A=
Bài 2 Giải phương trình a) b)
Bài 3 Cho a,b,c thỏa mãn ab+bc+ac=4
chứng minh rằng: a2+b2+c2 lớn hơn hoặc bằng 4
Bài 4 cho tam giác ABC vuông tại A (AC>AB),đường cao AH . Trong nửa mặt phẳng bờ AH có chứa C vẽ hình vuông AHKE. gọi P là giao điểm của AC và KE a)tính các góc của tam giác ABP b)gọi Q là đỉnh thứ tư của hình bình hành APQB, gọi I là giao điểm của BP và QA.cm H,I,K thẳng hàng c)Gọi F là giao điểm AK và HE. cm AI.AK=AF.AQ
Đề 3
Bài 1:Cho đa thức P(x)= 2x4-7x3-2x2+13x+6 1) Phân tích P(x) thành nhân tử 2) Chứng minh rằng P(x) chia hết cho 6 với mọi x thuộc Z Bài 2: Cho hình bình hành ABCD (AC>BD). Vẽ CE vuông góc với AB và CF vuông góc với AD. Chứng minh rằng: AB.AE+AD.AF= Bài 3: Cho phân thức F(x)= 1) Rút gọn phân thức 2) Xác định x để phân thức có giá trị nhỏ nhất Bài 4: Cho tam giác vuông ABC, cạnh huyền BC bằng 289 và đường cao AH bằng 120. Tính hai cạnh AB và AC Bài 5:Cho 3 số dương a,b,c 1)C/m: >9 2) Giải phương trình:
* Một số tài liệu cũ có thể bị lỗi font khi hiển thị do dùng bộ mã không phải Unikey ...
Người chia sẻ: Lê Ngọc Lâm
Dung lượng: 34,00KB|
Lượt tài: 3
Loại file: doc
Nguồn : Chưa rõ
(Tài liệu chưa được thẩm định)