De thi toan vao 10 tinh hưng yen

Chia sẻ bởi Lại Quốc Dũng | Ngày 15/10/2018 | 44

Chia sẻ tài liệu: de thi toan vao 10 tinh hưng yen thuộc Hóa học 9

Nội dung tài liệu:


SỞ GIÁO DỤC VÀ ĐÀO TẠO
HƯNG YÊN
KỲ THI TUYỂN SINH VÀO LỚP 10 THPT
NĂM HỌC 2012 - 2013
Thời gian làm bài: 120 phút (không kể thời gian giao đề)

PHẦN A: TRẮC NGHIỆM KHÁCH QUAN (2 điểm)
Từ câu 1 đến câu 8, hãy chọn phương án đúng và viết chữ cái đứng trước phương án đó vào bài làm
Câu 1: giá trị của biểu thức  bằng:





Câu 2: Biểu thức có nghĩa khi:
x < 2




Câu 3: đường thẳng y = (2m – 1)x + 3 song song với đường thẳng y = 3x – 2 khi:
m = 2
m = - 2



Câu 4: Hệ phương trình có nghiệm (x;y) là:
(-2;5)
(0;-3)
(1;2)
(2;1)

Câu 5: Phương trình x2 – 6x – 5 = 0 có tổng hai nghiệm là S và tích hai nghiệm là P thì:
S = 6; P = -5
S = -6; P = 5
S = -5; P = 6
S = 6; P = 5

Câu 6: Đồ thị hàm số y = -x2 đi qua điểm:
(1;1)
(-2;4)
(2;-4)
(;-1)

Câu 7: Tam giác ABC vuông tại A có AB = 4cm; AC = 3cm thì độ dài đường cao AH là:
cm
cm
cm
cm

Câu 8: Hình trụ có bán kính đáy và chiều cao cùng bằng R thì thể tích là





PHẦN B: TỰ LUẬN ( 8,0 điểm)
Bài 1: (1 điểm)
Tìm x biết 
Rút gọn biểu thức: 
Bài 2: (1,5 điểm)
Cho đường thẳng (d): y = 2x + m – 1
Khi m = 3, tìm a để điểm A(a; -4) thuộc đường thẳng (d).
Tìm m để đường thẳng (d) cắt các trục tọa độ Ox, Oy lần lượt tại M và N sao cho tam giác OMN có diện tích bằng 1.
Bài 3: (1,5 điểm)
Cho phương trình x2 – 2(m + 1)x + 4m = 0 (1)
Giải phương trình (1) với m = 2.
Tìm m để phương trình (1) có nghiệm x1, x2 thỏa mãn (x1 + m)(x2 + m) = 3m2 + 12
Bài 4: (3 điểm)
Từ điểm A ở bên ngoài đường tròn (O), kẻ các tiếp tuyến Am, AN với đường tròn (M, N là các tiếp điểm). Đường thẳng d đi qua A cắt đường tròn (O) tại hai điểm phân biệt B,C (O không thuộc (d), B nằm giữa A và C). Gọi H là trung điểm của BC.
Chứng minh các điểm O, H, M, A, N cùng nằm trên một đường tròn,
Chứng minh HA là tia phân giác của .
Lấy điểm E trân MN sao cho BE song song với AM. Chứng minh HE//CM.
Bài 5 (1,0 điểm)
Cho các số thực dương x, y , z thỏa mãn x + y + z = 4.
Chứng minh rằng 
* Một số tài liệu cũ có thể bị lỗi font khi hiển thị do dùng bộ mã không phải Unikey ...

Người chia sẻ: Lại Quốc Dũng
Dung lượng: 182,50KB| Lượt tài: 1
Loại file: doc
Nguồn : Chưa rõ
(Tài liệu chưa được thẩm định)