ĐỀ THI HSG TOÁN 9 CẤP TỈNH
Chia sẻ bởi đỗ tâm |
Ngày 14/10/2018 |
51
Chia sẻ tài liệu: ĐỀ THI HSG TOÁN 9 CẤP TỈNH thuộc Vật lí 8
Nội dung tài liệu:
SỞ GIÁO DỤC VÀ ĐÀO TẠO
THANH HOÁ
Số báo danh
........................
ĐỀ THI CHÍNH THỨC
KỲ THI CHỌN HỌC SINH GIỎI CẤP TỈNH
Năm học 2013 - 2014
Môn thi: TOÁN - Lớp 9 THCS
Thời gian: 150 phút (không kể thời gian giao đề)
Ngày thi: 21/03/2014
(Đề thi có 01 trang, gồm 05 câu)
Câu I (4,0 điểm): Cho biểu thức .
1. Rút gọn biểu thức A.
2. Cho . Tìm giá trị lớn nhất của A.
Câu II (5,0 điểm).
1.Cho phương trình . Tìm để phương trình
có hai nghiệm thực phân biệt , thỏa mãn .
2. Giải hệ phương trình .
Câu III (4,0 điểm).
1. Tìm tất cả các cặp số nguyên dương (a; b) sao cho (a + b2) chia hết cho (a2b – 1).
2. Tìm thỏa mãn .
Câu IV (6,0 điểm) : Cho nửa đường tròn tâm O đường kính AB. Một điểm C cố định thuộc đoạn thẳng AO (C khác A và C khác O). Đường thẳng đi qua C và vuông góc với AO cắt nửa đường tròn đã cho tại D. Trên cung BD lấy điểm M (M khác B và M khác D). Tiếp tuyến của nửa đường tròn đã cho tại M cắt đường thẳng CD tại E. Gọi F là giao điểm của AM và CD.
1. Chứng minh tam giác EMF là tam giác cân.
2. Gọi I là tâm đường tròn ngoại tiếp tam giác FDM. Chứng minh ba điểm D, I, B thẳng hàng.
3. Chứng minh góc ABI có số đo không đổi khi M di chuyển trên cung BD.
Câu V (1,0 điểm) : Cho x, y là các số thực dương thoả mãn x + y = 1.
Tìm giá trị nhỏ nhất của biểu thức .
----- HẾT -----
Thí sinh không được sử dụng tài liệu. Cán bộ coi thi không giải thích gì thêm
SỞ GIÁO DỤC VÀ ĐÀO TẠO
THANH HOÁ
HƯỚNG DẪN CHẤM
ĐỀ THI CHÍNH THỨC
KỲ THI CHỌN HỌC SINH GIỎI CẤP TỈNH
Năm học 2013 - 2014
Môn thi: TOÁN - Lớp 9 THCS
Thời gian: 150 phút (không kể thời gian giao đề)
Ngày thi: 21/03/2014
(Hướng dẫn chấm gồm 04 trang)
Câu
Ý
Lời giải (vắn tắt)
Điểm
I
(4,0đ)
1
(2,5đ)
Điều kiện: .
0,25
0,50
0,50
.
1,25
2
(1,5đ)
Theo Côsi, ta có: .
0,50
Dấu bằng xảy ra ( ( x = y = .
0,50
Vậy: maxA = 9, đạt được khi : x = y = .
0,50
II
(5,0đ)
1
(2,5đ)
PT đã cho có hai nghiệm phân biệt có điều kiện:
(*)
0,50
Với theo Vi-et ta có: .
0,25
Ta có (1)
0,50
0,50
. Đặt do
0,50
Ta cos (1) trở thành ( do )
0,50
Với ta có thỏa mãn (*)
0,25
2
(2,5đ)
Ta có:
=
= =
= xyz (x + y + z) = xyz ( vì x + y + z = 1).
0,50
0,50
0,50
Dấu bằng xảy ra
Vậy nghiệm của hệ phương trình là:
0,50
III
(4,0đ)
1
(2,0đ)
Giả sử (a + b2) ( (a2b – 1), tức là: a + b2 = k(a2b – 1), với k ( (* (
( a + k = b(ka2 – b) ( a + k = mb (1)
Ở đó m ( ( mà: m = ka2 – b ( m + b = ka2 (2)
0,50
THANH HOÁ
Số báo danh
........................
ĐỀ THI CHÍNH THỨC
KỲ THI CHỌN HỌC SINH GIỎI CẤP TỈNH
Năm học 2013 - 2014
Môn thi: TOÁN - Lớp 9 THCS
Thời gian: 150 phút (không kể thời gian giao đề)
Ngày thi: 21/03/2014
(Đề thi có 01 trang, gồm 05 câu)
Câu I (4,0 điểm): Cho biểu thức .
1. Rút gọn biểu thức A.
2. Cho . Tìm giá trị lớn nhất của A.
Câu II (5,0 điểm).
1.Cho phương trình . Tìm để phương trình
có hai nghiệm thực phân biệt , thỏa mãn .
2. Giải hệ phương trình .
Câu III (4,0 điểm).
1. Tìm tất cả các cặp số nguyên dương (a; b) sao cho (a + b2) chia hết cho (a2b – 1).
2. Tìm thỏa mãn .
Câu IV (6,0 điểm) : Cho nửa đường tròn tâm O đường kính AB. Một điểm C cố định thuộc đoạn thẳng AO (C khác A và C khác O). Đường thẳng đi qua C và vuông góc với AO cắt nửa đường tròn đã cho tại D. Trên cung BD lấy điểm M (M khác B và M khác D). Tiếp tuyến của nửa đường tròn đã cho tại M cắt đường thẳng CD tại E. Gọi F là giao điểm của AM và CD.
1. Chứng minh tam giác EMF là tam giác cân.
2. Gọi I là tâm đường tròn ngoại tiếp tam giác FDM. Chứng minh ba điểm D, I, B thẳng hàng.
3. Chứng minh góc ABI có số đo không đổi khi M di chuyển trên cung BD.
Câu V (1,0 điểm) : Cho x, y là các số thực dương thoả mãn x + y = 1.
Tìm giá trị nhỏ nhất của biểu thức .
----- HẾT -----
Thí sinh không được sử dụng tài liệu. Cán bộ coi thi không giải thích gì thêm
SỞ GIÁO DỤC VÀ ĐÀO TẠO
THANH HOÁ
HƯỚNG DẪN CHẤM
ĐỀ THI CHÍNH THỨC
KỲ THI CHỌN HỌC SINH GIỎI CẤP TỈNH
Năm học 2013 - 2014
Môn thi: TOÁN - Lớp 9 THCS
Thời gian: 150 phút (không kể thời gian giao đề)
Ngày thi: 21/03/2014
(Hướng dẫn chấm gồm 04 trang)
Câu
Ý
Lời giải (vắn tắt)
Điểm
I
(4,0đ)
1
(2,5đ)
Điều kiện: .
0,25
0,50
0,50
.
1,25
2
(1,5đ)
Theo Côsi, ta có: .
0,50
Dấu bằng xảy ra ( ( x = y = .
0,50
Vậy: maxA = 9, đạt được khi : x = y = .
0,50
II
(5,0đ)
1
(2,5đ)
PT đã cho có hai nghiệm phân biệt có điều kiện:
(*)
0,50
Với theo Vi-et ta có: .
0,25
Ta có (1)
0,50
0,50
. Đặt do
0,50
Ta cos (1) trở thành ( do )
0,50
Với ta có thỏa mãn (*)
0,25
2
(2,5đ)
Ta có:
=
= =
= xyz (x + y + z) = xyz ( vì x + y + z = 1).
0,50
0,50
0,50
Dấu bằng xảy ra
Vậy nghiệm của hệ phương trình là:
0,50
III
(4,0đ)
1
(2,0đ)
Giả sử (a + b2) ( (a2b – 1), tức là: a + b2 = k(a2b – 1), với k ( (* (
( a + k = b(ka2 – b) ( a + k = mb (1)
Ở đó m ( ( mà: m = ka2 – b ( m + b = ka2 (2)
0,50
* Một số tài liệu cũ có thể bị lỗi font khi hiển thị do dùng bộ mã không phải Unikey ...
Người chia sẻ: đỗ tâm
Dung lượng: 307,50KB|
Lượt tài: 2
Loại file: doc
Nguồn : Chưa rõ
(Tài liệu chưa được thẩm định)