Đề thi HSG toán 8- Thạch hà- Hà tĩnh (2000-2001)
Chia sẻ bởi Trần Văn Đồng |
Ngày 14/10/2018 |
33
Chia sẻ tài liệu: Đề thi HSG toán 8- Thạch hà- Hà tĩnh (2000-2001) thuộc Vật lí 9
Nội dung tài liệu:
Đề thi HSG Toán 8 - Thạch Hà - Hà tĩnh năm 2000 - 2001
Bài 1:
a) Thực hiện phép chia: (x3 - 2x - 4) : (x2 + 2x + 2)
b) Xác định a sao cho ax3 - 2x - 4 chia hết cho x - 2
c) Tìm nghiệm của đa thức: x3 - 2x - 4
Bài 2:
a) Tính S =
b) Chứng minh
c) Tính
Bài 3: Giải các phương trình
a)
b)
Bài 4:
Cho vuông tại A. Vẽ ra phía ngoài tam giác đó các tam giác ABD vuông cân ở B, ACE vuông cân ở C. CD cắt AB tại M, BE cắt AC tại N
a) Chứng minh ba điểm D, A, E thẳng hàng; các tứ giác BCE; ACBD là hình thang
b) Tính DM biết AM = 3cm; AC = 4 cm; MC = 5cm
c) Chứng minh AM = AN
Bài 5:
Cho M là điểm nằm trong , từ M kẻ MA’ BC, MB’ AC, MC’ AB
(A’ BC; B’ AC; C’ AB). Chứng minh rằng: = 1
(Với ha, hb, hc là ba đường cao của tam giác hạ lần lượt từ A, B, C xuống ba cạnh của )
Bài 1:
a) Thực hiện phép chia: (x3 - 2x - 4) : (x2 + 2x + 2)
b) Xác định a sao cho ax3 - 2x - 4 chia hết cho x - 2
c) Tìm nghiệm của đa thức: x3 - 2x - 4
Bài 2:
a) Tính S =
b) Chứng minh
c) Tính
Bài 3: Giải các phương trình
a)
b)
Bài 4:
Cho vuông tại A. Vẽ ra phía ngoài tam giác đó các tam giác ABD vuông cân ở B, ACE vuông cân ở C. CD cắt AB tại M, BE cắt AC tại N
a) Chứng minh ba điểm D, A, E thẳng hàng; các tứ giác BCE; ACBD là hình thang
b) Tính DM biết AM = 3cm; AC = 4 cm; MC = 5cm
c) Chứng minh AM = AN
Bài 5:
Cho M là điểm nằm trong , từ M kẻ MA’ BC, MB’ AC, MC’ AB
(A’ BC; B’ AC; C’ AB). Chứng minh rằng: = 1
(Với ha, hb, hc là ba đường cao của tam giác hạ lần lượt từ A, B, C xuống ba cạnh của )
* Một số tài liệu cũ có thể bị lỗi font khi hiển thị do dùng bộ mã không phải Unikey ...
Người chia sẻ: Trần Văn Đồng
Dung lượng: 42,00KB|
Lượt tài: 0
Loại file: doc
Nguồn : Chưa rõ
(Tài liệu chưa được thẩm định)