đề thi hsg toán 8
Chia sẻ bởi Nguyễn Quốc Tuấn |
Ngày 12/10/2018 |
61
Chia sẻ tài liệu: đề thi hsg toán 8 thuộc Đại số 8
Nội dung tài liệu:
PHÒNG GD&ĐT
VĨNH TƯỜNG
ĐỀ THI GIAO LƯU HSG NĂM HỌC 2011 – 2012
Môn: Toán lớp 8
Thời gian làm bài: 150 phút
I.Trắc nghiệm (2đ): Hãy chọn chữ cái đứng trước câu trả lời đúng:
Câu 1: Rút gọn biểu thức ta được kết quả là:
A) 2
B)
C) 1
D) - 2
Câu 2: Cho x; y là hai số khác nhau sao cho ; Giá trị của biểu thức là:
A) 4
B) - 4
C) 0
D) - 2
Câu 3: Cho ; Ta có tích bằng:
A) - 300
B) 150
C) 200
D) 255
Câu 4: Tứ giác ABCD có I là giao điểm của hai đường chéo. Biết AB = 6 cm;
IA = 8 cm; IB = 4 cm; ID = 6 cm; Ta có AD bằng:
A) 10 cm
B) cm
C) cm
D) cm
II. Tự luận:
Câu 5 (1,5đ): Cho biểu thức
Rút gọn P;
Tìm giá trị của P với và .
Câu 6 (2đ): Cho điểm I di động trên đoạn thẳng AB. Trên cùng một nửa mặt phẳng bờ AB vẽ các hình vuông AICD; BIEF; gọi O và lần lượt là giao điểm các đường chéo của hai hình vuông đó. Gọi K là giao điểm của AC và BE.
Tứ giác là hình gì? Vì sao ?
Trung điểm M của di động trên đường nào?
Xác định vị trí của điểm I để cho tứ giác là hình vuông.
Câu 7 (1,5đ): Giải các phương trình nghiệm nguyên sau:
a)
b)
Câu 8 (3đ): a) Tìm các số có hai chữ số thỏa mãn điều kiện sau: Nếu lấy bình phương số đó trừ đi bình phương số có hai chữ số được viết bởi các chữ số của số đó nhưng theo thứ tự ngược lại thì được một số chính phương.
b) Tìm giá trị lớn nhất, giá trị nhỏ nhất của biểu thức:
c) Cho hình lục giác đều ABCDEG. Người ta tô màu đỏ hai đỉnh A và D, tô màu xanh 4 đỉnh còn lại. Sau đó người ta đổi màu các đỉnh đó theo quy tắc sau: Mỗi lần đổi màu phải chọn 3 đỉnh của một tam giác cân rồi đổi màu đồng thời cả 3 đỉnh đó (đỏ thành xanh, xanh thành đỏ). Hỏi sau một số lần đổi màu theo quy tắc đó có thu được kết quả là đỉnh C có màu đỏ còn 5 đỉnh còn lại màu xanh không ?
d) Cho a, b, c là các số dương thỏa mãn: .
Chứng minh rằng:
PHÒNG GD&ĐT
VĨNH TƯỜNG
ĐÁP ÁN CHẤM ĐỀ THI GIAO LƯU HSG NĂM HỌC 2011 – 2012
Môn: Toán lớp 8
I.Trắc nghiệm: (2 điểm mỗi câu đúng cho 0,5 đ)
Câu
1
2
3
4
Đáp án
D
A
D
C
II. Tự luận: (8 điểm)
Câu
Phần
Nội dung cần trình bày
Điểm
5
(1,5đ)
a
(0,75đ)
ĐKXĐ:
0,25
0,5
b
(0,75đ)
Với x = 0 (loại)
Thay x = 1; y = ta được P = 3;
Thay x = 1; y = thì
0,25
0,25
0,25
6
(2đ)
Vẽ hình – GT, KL
0,25
0,25
a
(0,5đ)
(T/C hai đường chéo của hình vuông)
Ta có góc DIF = 900 (hai tia phân giác của hai góc kề bù)
Tứ giác OKO’I có 3 góc vuông nên là HCN.
0,5
b
(0,5đ)
Trung điểm M của OO’ cũng là trung điểm của KI (K cố định) suy ra M di động trên đường trung bình của (đường trung bình này song song AB)
0,5
c
(0,5đ)
Hình chữ nhật OKO’I là hình vuông khi và chỉ khi IO = IO’ I là trung điểm của AB.
0,5
7
(1,5đ)
a
(0,5đ)
Vì
Lần lượt thay vào PT ta tính được
VĨNH TƯỜNG
ĐỀ THI GIAO LƯU HSG NĂM HỌC 2011 – 2012
Môn: Toán lớp 8
Thời gian làm bài: 150 phút
I.Trắc nghiệm (2đ): Hãy chọn chữ cái đứng trước câu trả lời đúng:
Câu 1: Rút gọn biểu thức ta được kết quả là:
A) 2
B)
C) 1
D) - 2
Câu 2: Cho x; y là hai số khác nhau sao cho ; Giá trị của biểu thức là:
A) 4
B) - 4
C) 0
D) - 2
Câu 3: Cho ; Ta có tích bằng:
A) - 300
B) 150
C) 200
D) 255
Câu 4: Tứ giác ABCD có I là giao điểm của hai đường chéo. Biết AB = 6 cm;
IA = 8 cm; IB = 4 cm; ID = 6 cm; Ta có AD bằng:
A) 10 cm
B) cm
C) cm
D) cm
II. Tự luận:
Câu 5 (1,5đ): Cho biểu thức
Rút gọn P;
Tìm giá trị của P với và .
Câu 6 (2đ): Cho điểm I di động trên đoạn thẳng AB. Trên cùng một nửa mặt phẳng bờ AB vẽ các hình vuông AICD; BIEF; gọi O và lần lượt là giao điểm các đường chéo của hai hình vuông đó. Gọi K là giao điểm của AC và BE.
Tứ giác là hình gì? Vì sao ?
Trung điểm M của di động trên đường nào?
Xác định vị trí của điểm I để cho tứ giác là hình vuông.
Câu 7 (1,5đ): Giải các phương trình nghiệm nguyên sau:
a)
b)
Câu 8 (3đ): a) Tìm các số có hai chữ số thỏa mãn điều kiện sau: Nếu lấy bình phương số đó trừ đi bình phương số có hai chữ số được viết bởi các chữ số của số đó nhưng theo thứ tự ngược lại thì được một số chính phương.
b) Tìm giá trị lớn nhất, giá trị nhỏ nhất của biểu thức:
c) Cho hình lục giác đều ABCDEG. Người ta tô màu đỏ hai đỉnh A và D, tô màu xanh 4 đỉnh còn lại. Sau đó người ta đổi màu các đỉnh đó theo quy tắc sau: Mỗi lần đổi màu phải chọn 3 đỉnh của một tam giác cân rồi đổi màu đồng thời cả 3 đỉnh đó (đỏ thành xanh, xanh thành đỏ). Hỏi sau một số lần đổi màu theo quy tắc đó có thu được kết quả là đỉnh C có màu đỏ còn 5 đỉnh còn lại màu xanh không ?
d) Cho a, b, c là các số dương thỏa mãn: .
Chứng minh rằng:
PHÒNG GD&ĐT
VĨNH TƯỜNG
ĐÁP ÁN CHẤM ĐỀ THI GIAO LƯU HSG NĂM HỌC 2011 – 2012
Môn: Toán lớp 8
I.Trắc nghiệm: (2 điểm mỗi câu đúng cho 0,5 đ)
Câu
1
2
3
4
Đáp án
D
A
D
C
II. Tự luận: (8 điểm)
Câu
Phần
Nội dung cần trình bày
Điểm
5
(1,5đ)
a
(0,75đ)
ĐKXĐ:
0,25
0,5
b
(0,75đ)
Với x = 0 (loại)
Thay x = 1; y = ta được P = 3;
Thay x = 1; y = thì
0,25
0,25
0,25
6
(2đ)
Vẽ hình – GT, KL
0,25
0,25
a
(0,5đ)
(T/C hai đường chéo của hình vuông)
Ta có góc DIF = 900 (hai tia phân giác của hai góc kề bù)
Tứ giác OKO’I có 3 góc vuông nên là HCN.
0,5
b
(0,5đ)
Trung điểm M của OO’ cũng là trung điểm của KI (K cố định) suy ra M di động trên đường trung bình của (đường trung bình này song song AB)
0,5
c
(0,5đ)
Hình chữ nhật OKO’I là hình vuông khi và chỉ khi IO = IO’ I là trung điểm của AB.
0,5
7
(1,5đ)
a
(0,5đ)
Vì
Lần lượt thay vào PT ta tính được
* Một số tài liệu cũ có thể bị lỗi font khi hiển thị do dùng bộ mã không phải Unikey ...
Người chia sẻ: Nguyễn Quốc Tuấn
Dung lượng: 203,50KB|
Lượt tài: 3
Loại file: doc
Nguồn : Chưa rõ
(Tài liệu chưa được thẩm định)