Đề thi HSG Toán 8
Chia sẻ bởi Nguyễn Thiên Hương |
Ngày 12/10/2018 |
57
Chia sẻ tài liệu: Đề thi HSG Toán 8 thuộc Đại số 8
Nội dung tài liệu:
Đề thi chọn học sinh giỏi
Môn : Toán lớp 8
Thời gian làm bài : 120 phút
Câu 1 : (2 điểm)
Cho P
a) Rút gọn P
b) Tìm giá trị nguyên của a để P nhận giá trị nguyên
Câu 2 : (2 điểm)
a) Chứng minh rằng nếu tổng của hai số nguyên chia hết cho 3 thì tổng các lập phương của chúng chia hết cho 3.
b) Tìm các giá trị của x để biểu thức :
P=(x-1)(x+2)(x+3)(x+6) có giá trị nhỏ nhất. Tìm giá trị nhỏ nhất đó.
Câu 3 : (2 điểm)
a) Giải phương trình :
b) Cho a, b, c là 3 cạnh của một tam giác. Chứng minh rằng :
A =
Câu 4 : (3 điểm)
Cho tam giác đều ABC, gọi M là trung điểm của BC. Một góc xMy bằng 600 quay quanh điểm M sao cho 2 cạnh Mx, My luôn cắt cạnh AB và AC lần lượt tại D và E. Chứng minh :
a) BD.CE
b) DM,EM lần lượt là tia phân giác của các góc BDE và CED.
c) Chu vi tam giác ADE không đổi.
Câu 5 : (1 điểm)
Tìm tất cả các tam giác vuông có số đo các cạnh là các số nguyên dương và số đo diện tích bằng số đo chu vi.
đáp án đề thi học sinh giỏi
môn thi : toán lớp 8
Câu 1 : (2 đ)
a) (1,5) a3 - 4a2 - a + 4 = a( a2 - 1 ) - 4(a2 - 1 ) =( a2 - 1)(a-4)
=(a-1)(a+1)(a-4) 0,5
a3 -7a2 + 14a - 8 =( a3 -8 ) - 7a( a-2 ) =( a -2 )(a2 + 2a + 4) - 7a( a-2 )
=( a -2 )(a2 - 5a + 4) = (a-2)(a-1)(a-4) 0,5
Nêu ĐKXĐ : a0,25
Rút gọn P0,25
b) (0,5đ) P; ta thấy P nguyên khi a-2 là ước của 3,
mà Ư(30,25
Từ đó tìm được a0,25
Câu 2 : (2đ)
a)(1đ) Gọi 2 số phải tìm là a và b , ta có a+b chia hết cho 3 . 0,25
Ta có a3+b3=(a+b)(a2-ab+b2)=(a+b
=(a+b 0,5
Vì a+b chia hết cho 3 nên (a+b)2-3ab chia hết cho 3 ;
Do vậy (a+bchia hết cho 9 0,25
b) (1đ) P=(x-1)(x+6)(x+2)(x+3)=(x2+5x-6)(x2+5x+6)=(x2+5x)2-36 0,5
Ta thấy (x2+5x)2 0 nên P=(x2+5x)2-36 -36 0,25
Do đó Min P=-36 khi (x2+5x)2=0
Từ đó ta tìm được x=0 hoặc x=-5 thì Min P=-36 0,25
Câu 3 : (2đ)
a) (1đ) x2+9x+20 =(x+4)(x+5) ;
x2+11x+30 =(x+6)(x+5) ;
x2+13x+42 =(x+6)(x+7) ; 0,25
ĐKXĐ : 0,25
Phương trình trở thành :
0,
Môn : Toán lớp 8
Thời gian làm bài : 120 phút
Câu 1 : (2 điểm)
Cho P
a) Rút gọn P
b) Tìm giá trị nguyên của a để P nhận giá trị nguyên
Câu 2 : (2 điểm)
a) Chứng minh rằng nếu tổng của hai số nguyên chia hết cho 3 thì tổng các lập phương của chúng chia hết cho 3.
b) Tìm các giá trị của x để biểu thức :
P=(x-1)(x+2)(x+3)(x+6) có giá trị nhỏ nhất. Tìm giá trị nhỏ nhất đó.
Câu 3 : (2 điểm)
a) Giải phương trình :
b) Cho a, b, c là 3 cạnh của một tam giác. Chứng minh rằng :
A =
Câu 4 : (3 điểm)
Cho tam giác đều ABC, gọi M là trung điểm của BC. Một góc xMy bằng 600 quay quanh điểm M sao cho 2 cạnh Mx, My luôn cắt cạnh AB và AC lần lượt tại D và E. Chứng minh :
a) BD.CE
b) DM,EM lần lượt là tia phân giác của các góc BDE và CED.
c) Chu vi tam giác ADE không đổi.
Câu 5 : (1 điểm)
Tìm tất cả các tam giác vuông có số đo các cạnh là các số nguyên dương và số đo diện tích bằng số đo chu vi.
đáp án đề thi học sinh giỏi
môn thi : toán lớp 8
Câu 1 : (2 đ)
a) (1,5) a3 - 4a2 - a + 4 = a( a2 - 1 ) - 4(a2 - 1 ) =( a2 - 1)(a-4)
=(a-1)(a+1)(a-4) 0,5
a3 -7a2 + 14a - 8 =( a3 -8 ) - 7a( a-2 ) =( a -2 )(a2 + 2a + 4) - 7a( a-2 )
=( a -2 )(a2 - 5a + 4) = (a-2)(a-1)(a-4) 0,5
Nêu ĐKXĐ : a0,25
Rút gọn P0,25
b) (0,5đ) P; ta thấy P nguyên khi a-2 là ước của 3,
mà Ư(30,25
Từ đó tìm được a0,25
Câu 2 : (2đ)
a)(1đ) Gọi 2 số phải tìm là a và b , ta có a+b chia hết cho 3 . 0,25
Ta có a3+b3=(a+b)(a2-ab+b2)=(a+b
=(a+b 0,5
Vì a+b chia hết cho 3 nên (a+b)2-3ab chia hết cho 3 ;
Do vậy (a+bchia hết cho 9 0,25
b) (1đ) P=(x-1)(x+6)(x+2)(x+3)=(x2+5x-6)(x2+5x+6)=(x2+5x)2-36 0,5
Ta thấy (x2+5x)2 0 nên P=(x2+5x)2-36 -36 0,25
Do đó Min P=-36 khi (x2+5x)2=0
Từ đó ta tìm được x=0 hoặc x=-5 thì Min P=-36 0,25
Câu 3 : (2đ)
a) (1đ) x2+9x+20 =(x+4)(x+5) ;
x2+11x+30 =(x+6)(x+5) ;
x2+13x+42 =(x+6)(x+7) ; 0,25
ĐKXĐ : 0,25
Phương trình trở thành :
0,
* Một số tài liệu cũ có thể bị lỗi font khi hiển thị do dùng bộ mã không phải Unikey ...
Người chia sẻ: Nguyễn Thiên Hương
Dung lượng: 27,01KB|
Lượt tài: 3
Loại file: rar
Nguồn : Chưa rõ
(Tài liệu chưa được thẩm định)