De thi HSG lop8 - dap an

Chia sẻ bởi Phan Văn Hiền | Ngày 13/10/2018 | 46

Chia sẻ tài liệu: de thi HSG lop8 - dap an thuộc Đại số 8

Nội dung tài liệu:


ĐỀ THI HỌC SINH GIỎI

Bài 1: (3đ) a) Phân tích đa thức x3 – 5x2 + 8x – 4 thành nhân tử
b) Tìm giá trị nguyên của x để A  B biết
A = 10x2 – 7x – 5 và B = 2x – 3 .
c) Cho x + y = 1 và x y 0 . Chứng minh rằng

Bài 2: (3đ) Giải các phương trình sau:
a) (x2 + x)2 + 4(x2 + x) = 12
b) 
Bài 3: (2đ) Cho hình vuông ABCD; Trên tia đối tia BA lấy E, trên tia đối tia CB lấy F sao cho AE = CF
a) Chứng minhEDF vuông cân
b) Gọi O là giao điểm của 2 đường chéo AC và BD. Gọi I là trung điểm EF. Chứng minh O, C, I thẳng hàng.
Bài 4: (2)Cho tam giác ABC vuông cân tại A. Các điểm D, E theo thứ tự di chuyển trên AB, AC sao cho BD = AE. Xác địnhvị trí điểm D, E sao cho:
a/ DE có độ dài nhỏ nhất
b/ Tứ giác BDEC có diện tích nhỏ nhất.

Hướng dẫn chấm và biểu điểm
Bài 1: (3 điểm)
a) ( 0,75đ) x3 - 5x2 + 8x - 4 = x3 - 4x2 + 4x – x2 + 4x – 4 (0,25đ)
= x( x2 – 4x + 4) – ( x2 – 4x + 4) (0,25đ)
= ( x – 1 ) ( x – 2 ) 2 (0,25đ)
b) (0,75đ) Xét  (0,25đ)
Với x  Z thì A  B khi   Z  7  ( 2x – 3) (0,25đ)
Mà Ư(7) =   x = 5; - 2; 2 ; 1 thì A  B (0,25đ)
c) (1,5đ) Biến đổi = 
=  ( do x + y = 1 y - 1= -x và x - 1= - y) (0,25đ)
=  (0,25đ)
=  (0,25đ)
=  = (0,25đ)
=  =  (0,25đ)
=  Suy ra điều cần chứng minh (0,25đ)

Bài 2: (3 đ)a) (1,25đ)
(x2 + x )2 + 4(x2 + x) = 12 đặt y = x2 + x
y2 + 4y - 12 = 0 y2 + 6y - 2y -12 = 0 (0,25đ)
(y + 6)(y - 2) = 0 y = - 6; y = 2 (0,25đ)
* x2 + x = - 6 vô nghiệm vì x2 + x + 6 > 0 với mọi x (0,25đ)
* x2 + x = 2 x2 + x - 2 = 0  x2 + 2x - x - 2 = 0 (0,25đ)
x(x + 2) – (x + 2) = 0 (x + 2)(x - 1) = 0 x = - 2; x = 1 (0,25đ)
Vậy nghiệm của phương trình x = - 2 ; x =1
b) (1,75đ)  
  (0,25đ)
(0,5đ) Vì ; ; 
Do đó : (0,25đ) Vậy x + 2009 = 0 x = -2009
Bài 3: (2 điểm)
a) (1đ)
Chứng minh EDF vuông cân
Ta có ADE =CDF (c.g.c)EDF cân tại D
Mặt khác: ADE =CDF (c.g.c) 
Mà  = 900  = 900
 = 900. VậyEDF vuông cân
b) (1đ) Chứng minh O, C, I thẳng
Theo tính chất đường chéo hình vuông  CO là trung trực BD
MàEDF vuông cân  DI =EF
Tương tự BI =EF  DI = BI
 I thuộc dường trung trực của DB  I thuộc đường thẳng CO
Hay O, C
* Một số tài liệu cũ có thể bị lỗi font khi hiển thị do dùng bộ mã không phải Unikey ...

Người chia sẻ: Phan Văn Hiền
Dung lượng: 208,50KB| Lượt tài: 3
Loại file: doc
Nguồn : Chưa rõ
(Tài liệu chưa được thẩm định)