DE THI HSG
Chia sẻ bởi Nguyễn Văn Hoàng |
Ngày 13/10/2018 |
60
Chia sẻ tài liệu: DE THI HSG thuộc Đại số 8
Nội dung tài liệu:
PHÒNG GIÁO DỤC & ĐÀO TẠO BẾN CÁT
TRƯỜNG THCS HOÀ LỢI
ĐỀ THI HỌC SINH GIỎI
Môn: Toán 8
Thời gian: 120 phút
Giáo viên ra đề: Nguyễn Văn Hoàng
Bài 1: (3 điểm)
a) Phân tích đa thức x3 – 5x2 + 8x – 4 thành nhân tử
b) Tìm giá trị nguyên của x để A B biết
A = 10x2 – 7x – 5 và B = 2x – 3 .
c) Cho x + y = 1 và x y 0 . Chứng minh rằng
Bài 2: (3 điểm)
Giải các phương trình sau:
a) (x2 + x)2 + 4(x2 + x) = 12
b)
Bài 3: (2 điểm)
Cho hình vuông ABCD; Trên tia đối tia BA lấy E, trên tia đối tia CB lấy F sao cho AE = CF
a) Chứng minhEDF vuông cân
b) Gọi O là giao điểm của 2 đường chéo AC và BD. Gọi I là trung điểm EF. Chứng minh O, C, I thẳng hàng.
Bài 4: (2 điểm)
Cho tam giác ABC vuông cân tại A. Các điểm D, E theo thứ tự di chuyển trên AB, AC sao cho BD = AE. Xác định
vị trí điểm D, E sao cho:
a/ DE có độ dài nhỏ nhất
b/ Tứ giác BDEC có diện tích nhỏ nhất.
----HẾT----
Hướng dẫn chấm và biểu điểm
Bài 1: (3 điểm)
a) ( 0,75đ)
x3 - 5x2 + 8x - 4 = x3 - 4x2 + 4x – x2 + 4x – 4 (0,25đ)
= x( x2 – 4x + 4) – ( x2 – 4x + 4) (0,25đ)
= ( x – 1 ) ( x – 2 ) 2 (0,25đ)
b) (0,75đ)
Xét (0,25đ)
Với x Z thì A B khi Z 7 ( 2x – 3) (0,25đ)
Mà Ư(7) = x = 5; - 2; 2 ; 1 thì A B (0,25đ)
c) (1,5đ)
Biến đổi =
= ( do x + y = 1 y - 1= -x và x - 1= - y) (0,25đ)
= (0,25đ)
= (0,25đ)
= = (0,25đ)
= = (0,25đ)
= Suy ra điều cần chứng minh (0,25đ)
Bài 2: (3 điểm)
a) (1,25đ)
(x2 + x )2 + 4(x2 + x) = 12 đặt y = x2 + x
y2 + 4y - 12 = 0 y2 + 6y - 2y -12 = 0 (0,25đ)
(y + 6)(y - 2) = 0 y = - 6; y = 2 (0,25đ)
* x2 + x = - 6 vô nghiệm vì x2 + x + 6 > 0 với mọi x (0,25đ)
* x2 + x = 2 x2 + x - 2 = 0 x2 + 2x - x - 2 = 0 (0,25đ)
x(x + 2) – (x + 2) = 0 (x + 2)(x - 1) = 0 x = - 2; x = 1 (0,25đ)
Vậy nghiệm của phương trình x = - 2 ; x =1
b) (1,75đ)
(0,5đ)
(0,25đ)
(0,5đ)
Vì ; ;
Do đó : (0,25đ)
Vậy x + 2009 = 0 x = -2009 (0,25đ)
Bài 3: (2 điểm)
a) (1đ)
Chứng minh EDF vuông cân
Ta có ADE =CDF (c.g.c)EDF cân tại D (0,25đ)
Mặt khác: ADE =CDF (c.g.c) (0,25đ)
TRƯỜNG THCS HOÀ LỢI
ĐỀ THI HỌC SINH GIỎI
Môn: Toán 8
Thời gian: 120 phút
Giáo viên ra đề: Nguyễn Văn Hoàng
Bài 1: (3 điểm)
a) Phân tích đa thức x3 – 5x2 + 8x – 4 thành nhân tử
b) Tìm giá trị nguyên của x để A B biết
A = 10x2 – 7x – 5 và B = 2x – 3 .
c) Cho x + y = 1 và x y 0 . Chứng minh rằng
Bài 2: (3 điểm)
Giải các phương trình sau:
a) (x2 + x)2 + 4(x2 + x) = 12
b)
Bài 3: (2 điểm)
Cho hình vuông ABCD; Trên tia đối tia BA lấy E, trên tia đối tia CB lấy F sao cho AE = CF
a) Chứng minhEDF vuông cân
b) Gọi O là giao điểm của 2 đường chéo AC và BD. Gọi I là trung điểm EF. Chứng minh O, C, I thẳng hàng.
Bài 4: (2 điểm)
Cho tam giác ABC vuông cân tại A. Các điểm D, E theo thứ tự di chuyển trên AB, AC sao cho BD = AE. Xác định
vị trí điểm D, E sao cho:
a/ DE có độ dài nhỏ nhất
b/ Tứ giác BDEC có diện tích nhỏ nhất.
----HẾT----
Hướng dẫn chấm và biểu điểm
Bài 1: (3 điểm)
a) ( 0,75đ)
x3 - 5x2 + 8x - 4 = x3 - 4x2 + 4x – x2 + 4x – 4 (0,25đ)
= x( x2 – 4x + 4) – ( x2 – 4x + 4) (0,25đ)
= ( x – 1 ) ( x – 2 ) 2 (0,25đ)
b) (0,75đ)
Xét (0,25đ)
Với x Z thì A B khi Z 7 ( 2x – 3) (0,25đ)
Mà Ư(7) = x = 5; - 2; 2 ; 1 thì A B (0,25đ)
c) (1,5đ)
Biến đổi =
= ( do x + y = 1 y - 1= -x và x - 1= - y) (0,25đ)
= (0,25đ)
= (0,25đ)
= = (0,25đ)
= = (0,25đ)
= Suy ra điều cần chứng minh (0,25đ)
Bài 2: (3 điểm)
a) (1,25đ)
(x2 + x )2 + 4(x2 + x) = 12 đặt y = x2 + x
y2 + 4y - 12 = 0 y2 + 6y - 2y -12 = 0 (0,25đ)
(y + 6)(y - 2) = 0 y = - 6; y = 2 (0,25đ)
* x2 + x = - 6 vô nghiệm vì x2 + x + 6 > 0 với mọi x (0,25đ)
* x2 + x = 2 x2 + x - 2 = 0 x2 + 2x - x - 2 = 0 (0,25đ)
x(x + 2) – (x + 2) = 0 (x + 2)(x - 1) = 0 x = - 2; x = 1 (0,25đ)
Vậy nghiệm của phương trình x = - 2 ; x =1
b) (1,75đ)
(0,5đ)
(0,25đ)
(0,5đ)
Vì ; ;
Do đó : (0,25đ)
Vậy x + 2009 = 0 x = -2009 (0,25đ)
Bài 3: (2 điểm)
a) (1đ)
Chứng minh EDF vuông cân
Ta có ADE =CDF (c.g.c)EDF cân tại D (0,25đ)
Mặt khác: ADE =CDF (c.g.c) (0,25đ)
* Một số tài liệu cũ có thể bị lỗi font khi hiển thị do dùng bộ mã không phải Unikey ...
Người chia sẻ: Nguyễn Văn Hoàng
Dung lượng: 212,50KB|
Lượt tài: 3
Loại file: doc
Nguồn : Chưa rõ
(Tài liệu chưa được thẩm định)