De thi hoc sing gioi toan 8 cuc hot

Chia sẻ bởi Đặng Thanh Thủy | Ngày 12/10/2018 | 49

Chia sẻ tài liệu: de thi hoc sing gioi toan 8 cuc hot thuộc Đại số 8

Nội dung tài liệu:

Đề thi hsg lớp 8
(120 phút)

Bài 1 (4đ):
1/ Phân tích đa thức thành nhân tử: x3 + 3x2 + 6x + 4.
2/ a,b,c là 3 cạch của tam giác. Chứng minh rằng:
4a2b2 > (a2 + b2 − c2)2

Bài 2 (3đ):
Chứng minh rằng nếu x + y = 1 và xy ≠ 0 thì :
 −  = 

Bài 3 (5đ):
Giải phương trình:
1,  +  =  + 
2, (2x − 1)3 + (x + 2)3 = (3x + 1)3

Bài 4 (6đ):
Cho ∆ABC vuông tại A. Vẽ về phía ngoài ∆ đó ∆ABD vuông cân tại B và ∆ACE vuông cân tại C. Gọi H là giao điểm của AB và CD, K là giao điểm của AC và BE. Chứng minh rằng:
1, AH = AK
2, AH2 = BH.CK

Bài 5 (2đ):
Tìm giá trị nhỏ nhất của biểu thức:
A = (x − 1)(x + 2)(x + 3)(x + 6).

đề thi học sinh giỏi
Thời gian 150 phút
Bài 1:
Rút gọn biểu thức:
A = với /x/ = 1
Cho x, y thỏa mãn: x2 + 2y2 + 2xy – 4y + 4 = 0
Tính giá trị biểu thức:
B =

Bài 2:
Giải phương trình:
(x – 2).(x + 2).(x2 – 10) = 72
Tìm x để biểu thức:
A = ( x – 1).(x + 2).(x + 3)(x + 6) đạt giá trị nhỏ nhất ? Tìm giá trị nhỏ nhất đó ?

Bài 3:
Tìm số tự nhiên x sao cho: x2 + 21 là số chính phương ?
Chứng minh rằng: Nếu m, n là hai số chính phương lẻ liên tiếp thì:
(m – 1).(n – 1) 192

Bài 4:
Cho đoạn thẳng AB. Trên đoạn thẳng AB lấy 1 điểm C sao cho AC > BC. Trên cùng nửa mặt phẳng bờ AB vẽ hai hình vuông ACNM, BCEF. Gọi H là giao điểm của AE và BN.
Chứng minh: M; H; F thẳng hàng.
Chứng minh: AM là tia phân giác của
Vẽ AI HM; AI cắt MN tại G. Chứng minh: GE = MG + CF

Bài 5:
Gải phương trình:
(x2 + 10x + 8)2 = (8x + 4).(x2 + 8x + 7)
Cho a, b, c R+ và a + b + c = 1.
Chứng minh rằng:
Đề số 1

Bài 1: (3 điểm)
Cho biểu thức
a) Rút gọn A.
b) Tìm x để A < -1.
c) Với giá trị nào của x thì A nhận giá trị nguyên.

Bài 2: (2 điểm)
Giải phương trình:
a)
b)

Bài 3: (2 điểm)
Một xe đạp, một xe máy và một ô tô cùng đi từ A đến B. Khởi hành lần lượt lúc 5 giờ, 6 giờ, 7 giờ và vận tốc theo thứ tự là 15 km/h; 35 km/h và 55 km/h.
Hỏi lúc mấy giờ ô tô cách đều xe đạp và xe đạp và xe máy.

Bài 4: (2 điểm)
Cho hình chữ nhật ABCD từ điểm P thuộc đường chéo AC ta dựng hình chữ nhật AMPN ( M ( AB và N (AD). Chứng minh:
a) BD // MN.
b) BD và MN cắt nhau tại K nằm trên AC.

Bài 5: (1 điểm)
Cho a = 11…1 (2n chữ số 1), b = 44…4 (n chữ số 4).
Chứng minh rằng: a + b + 1 là số chính phương.
Đề số 2

Câu I: (2điểm)
1)
* Một số tài liệu cũ có thể bị lỗi font khi hiển thị do dùng bộ mã không phải Unikey ...

Người chia sẻ: Đặng Thanh Thủy
Dung lượng: 415,50KB| Lượt tài: 3
Loại file: doc
Nguồn : Chưa rõ
(Tài liệu chưa được thẩm định)