Đề thi HK1 TPHCM

Chia sẻ bởi Hà Anh Đào | Ngày 12/10/2018 | 129

Chia sẻ tài liệu: Đề thi HK1 TPHCM thuộc Đại số 8

Nội dung tài liệu:






ĐỀ SỐ 1: QUẬN 1, NĂM 2014 – 2015
Thời gian: 60 phút
Bài 1: (2 điểm) Phân tích đa thức sau thành nhân tử:
.
.
Bài 2: (1,5 điểm) Tìm x, biết:
.
.
Bài 3: (2,5 điểm) Thực hiện các phép tính:
.
.
Bài 4: (0,5 điểm) Cho a, b, c Z thỏa mãn a – b + c = 123. Tìm số dư của phép chia  cho 2.
Bài 5: (3,5 điểm) Cho tam giác ABC vuông tại A (AB < AC). Điểm M là trung điểm của cạnh BC. Vẽ MD vuông góc với AB tại D, ME vuông góc với AC tại E. Trên tia đối của tia DM lấy điểm N sao cho DN = DM.
Chứng minh rằng: tứ giác ADME là hình chữ nhật.
Chứng minh rằng: tứ giác AMBN là hình thoi.
Vẽ CK vuông góc với BN tại K. Gọi I là giao điểm của AM và DE. Chứng minh rằng: tam giác IKN cân.
Gọi F là giao điểm của AM và CD. Chứng minh rằng: AN = 3MF.
ĐỀ SỐ 2: QUẬN 3, NĂM 2014 – 2015
Thời gian: 60 phút
Bài 1: (2 điểm) Thực hiện các phép tính sau:
.
.
.
Bài 2: (2 điểm) Phân tích đa thức sau thành nhân tử:
.
.
.
Bài 3: (1,5 điểm) Tìm x, biết:
.
.
Bài 4: (1 điểm) Cho phân thức  với .
Rút gọn A.
Tìm x nguyên để A có giá trị nguyên.
Bài 5: (3,5 điểm) Cho ABC cân tại A. Gọi D, E, H lần lượt là trung điểm của AB, AC, BC.
Tính độ dài đoạn thẳng DE khi BC = 20cm và chứng minh: DECH là hình bình hành.
Gọi F là điểm đối xứng của H qua E. Chứng minh: AHCF là hình chữ nhật.
Gọi M là giao điểm của DF và AE; N là giao điểm của DC và HE. Chứng minh: MN vuông góc DE.
Giả sử . Chứng minh: MD2 = MA.MC.
ĐẾ SỐ 3: QUẬN 5, NĂM 2014 – 2015
Thời gian: 60 phút
Bài 1: (2 điểm) Phân tích đa thức sau thành nhân tử:
.
.
Bài 2: (2 điểm)
Làm tính chia: .
Tìm x, biết: .
Bài 3: (2,5 điểm)
Rút gọn phân thức: .
Cộng các phân thức sau: .
Bài 4: (1 điểm) Cho hình thang ABCD vuông tại A và D có AB = AD = 2, góc C bằng 450. Tìm số đo góc ABC và độ dài BD.
Bài 5: (2,5 điểm) Cho tam giác AOB vuông cân tại O, trên tia đối của tia OA lấy điểm C, trên tia đối của tia OB lấy điểm D sao cho OC = OD (OC ≠ OA).
Chứng minh: tứ giác ABCD là hình thang cân.
Trên nửa mặt phẳng bờ là đường thẳng AC không chứa điểm B vẽ hình vuông ACMN. Các tứ giác ABDN, CBDM là hình gì? Vì sao?
Chứng minh: ABC = NDA.
ĐỀ SỐ 4: QUẬN 6, NĂM 2014 – 2015
Thời gian: 60 phút
Bài 1: (2 điểm) Thực hiện phép tính:
.
.
Bài 2: (2 điểm) Phân tích đa thức thành nhân tử:
.
.
Bài 3: (2 điểm) Tìm x, biết:
.
.
Bài 4: (0,5 điểm) Cho a + b = 7 và a.b = 3. Tính (a – b)2.
Bài 5: (3,5 điểm) Vẽ tam giác ABC vuông tại A. Gọi M, N lần lượt là trung điểm của AB và AC.
Chứng minh: tứ giác BMNC là hình thang.
BN và CM cắt nhau tại G. Gọi E và F lần lượt là trung điểm của BG và GC. Chứng minh: tứ giác MNEF là hình bình hành.
Tia AG cắt BC tại H. Chứng minh: tứ giác AMHN là hình chữ nhật.
Gọi K là điểm đối xứng với điểm M qua N và I là trung điểm của NH. Chứng minh: HN, MC, BK đồng quy tại một điểm.
ĐỀ SỐ 5: QUẬN 10, NĂM 2014 – 2015
Thời gian: 60 phút
Bài 1: (2,5 điểm) Thực hiện phép tính:
.
.
.
Bài 2: (2,5 điểm) Phân tích đa thức sau thành nhân
* Một số tài liệu cũ có thể bị lỗi font khi hiển thị do dùng bộ mã không phải Unikey ...

Người chia sẻ: Hà Anh Đào
Dung lượng: 272,25KB| Lượt tài: 3
Loại file: docx
Nguồn : Chưa rõ
(Tài liệu chưa được thẩm định)