Đề thi chọn HSG Toán 8 cấp huyện

Chia sẻ bởi Vũ Sĩ Hiệp | Ngày 26/04/2019 | 63

Chia sẻ tài liệu: Đề thi chọn HSG Toán 8 cấp huyện thuộc Đại số 8

Nội dung tài liệu:

phòng GD- đt
huyện thường tín
đề thi chọn học sinh giỏi
năm học 2007- 2008
Môn Toán lớp 8
Thời gian làm bài 150 phút


Câu 1: ( 5 điểm)

Cho biểu thức:

Rút gọn P.
Có giá trị nào của a, b để P = 0?
Tính giá trị của P biết a, b thỏa mãn điều kiện:
3a2 + 3b2 = 10ab và a > b > 0

Câu 2: ( 3,5 điểm)

Chứng minh rằng:
(n2 + n -1)2 – 1 chia hết cho 24 với mọi số nguyên n.
Tìm nghiệm nguyên của phương trình:
x2 = y( y +1)(y + 2)(y + 3)

Câu 3: ( 4 điểm) Giải phương trình:


c, x4 + x2 + 6x – 8 = 0
d, 

Câu 4: (7,5 điểm)

Cho tam giác ABC, O là giao điểm của các đường trung trực trong tam giác, H là trực tâm của tam giác. Gọi P, R, M theo thứ tự là trung điểm các cạnh AB, AC, BC. Gọi Q là trung điểm đoạn thẳng AH.
Xác định dạng của tứ giác OPQR? Tam giác ABC phải thỏa mãn điều kiện gì để OPQR là hình thoi?
Chứng minh AQ = OM.
Gọi G là trọng tâm của tam giác ABC. Chứng minh H, G, O thẳng hàng.
Vẽ ra ngoài tam giác ABC các hình vuông ABDE, ACFL. Gọi I là trung điểm của EL. Nếu diện tích tam giác ABC không đổi và BC cố định thì I di chuyển trên đường nào?

* Một số tài liệu cũ có thể bị lỗi font khi hiển thị do dùng bộ mã không phải Unikey ...

Người chia sẻ: Vũ Sĩ Hiệp
Dung lượng: | Lượt tài: 3
Loại file:
Nguồn : Chưa rõ
(Tài liệu chưa được thẩm định)