đề kiểm tra vật lý năm 2011 2012
Chia sẻ bởi Nguyễn Văn Hải Quỳnh |
Ngày 14/10/2018 |
40
Chia sẻ tài liệu: đề kiểm tra vật lý năm 2011 2012 thuộc Vật lí 9
Nội dung tài liệu:
MĐ 034
Bài 1: (1,5 điểm)
1/. tính:
2/.Hãy rút gọn: , điều kiện x > 0 và x 1
Bài 2: (1,5 điểm)
1/. Cho hai đường thẳng : y = (m+1) x + 5 ; : y = 2x + n. Với giá trị nào của m, n thì trùng với?
2/.Vẽ trên cùng mp tọa độ hai đồ thị (P): y ; d: y = 6 x . Tìm tọa độ giao điểm của (P) và d bằng phép toán .
Bài 3: (2,0 điểm) Cho pt: x2 +2 (m+3) x +m2 +3 = 0
1/ Tìm m để ptcó nghiệm kép ? Hãy tính nghiệm kép đó.
2/ Tìm m để phương trình có hai nghiệm x1 , x2 thỏa x1 – x2 = 2 ?
Bài 4 : (1,5 điểm) Giải các phương trình sau :
1/ 2/ x4 + 3x2 – 4 = 0
Bài 5 : (3,5 điểm)
Cho đường tròn (O ; R) đường kính AB và dây CD vuông góc với nhau (CA < CB). Hai tia BC và DA cắt nhau tại E. Từ E kẻ EH vuông góc với AB tại H ; EH cắt CA ở F. Chứng minh rằng :
1/ Tứ giác CDFE nội tiếp được trong một đường tròn.
2/ Ba điểm B , D , F thẳng hàng.
3/ HC là tiếp tuyến của đường tròn (O).
----------------- Hết ----------------
MĐ 001
Bài 1 (2.0 điểm )
1. Tìm x để mỗi biểu thức sau có nghĩa: a) ; b)
2. Trục căn thức ở mẫu: a) b)
3. Giải hệ phương trình :
Bài 2 (3.0 điểm )
Cho hàm số y = x2 và y = x + 2
a) Vẽ đồ thị của các hàm số này trên cùng một mp tọa độ Oxy
b) Tìm tọa độ các giao điểm A,B của đồ thị hai hàm số trên bằng phép tính
c) Tính diện tích tam giác OAB
Bài 3 (1.0 điểm )
Cho phương trình x2 – 2mx + m 2 – m + 3 có hai nghiệm x1 ; x 2 (với m là tham số ) .Tìm biểu thức x12 + x22 đạt giá trị nhỏ nhất.
Bài 4 (4.0 điểm )
Cho đt (O : AC/2) .Vẽ dây BD AC tại K ( K nằm giữa A và O).Lấy điểm E trên cung nhỏ CD ( E không trùng C và D), AE cắt BD tại H.
CMR : CBD cân và tứ giác CEHK nội tiếp.
Chứng minh rằng AD2 = AH . AE.
Cho BD = 24 cm , BC =20cm .Tính chu vi của hình tròn (O).
Cho góc BCD bằng α . Trên mặt phẳng bờ BC không chứa điểm A , vẽ tam giác MBC cân tại M .Tính góc MBC theo α để M thuộc đường tròn (O).
======Hết======
MĐ 002
Bài 1: (2 điểm) (không dùng máy tính bỏ túi)
a) Cho biết A= và B= . Hãy so sánh A+B và AB.
2x +y = 1
b) Giải hệ phương trình:
3x – 2 y= 12
Bài 2: (2.5 điểm)
Cho (P) : y= x2 và (d): y=mx-2 (m là tham số m 0)
a/ Vẽ đồ thị (P) trên mặt phẳng toạ độ Oxy.
b/ Khi m = 3, hãy tìm toạ độ giao điểm (p) và ( d)
c/ Gọi A(xA;yA), B(xA;yB) là hai giao điểm phân biệt của (P) và ( d). Tìm các gia trị của m sao cho : yA + yB = 2(xA + xB )-1.
Bài 3: (1.5 điểm)
Cho một mảnh đất hình chữ nhật có chiểu dai hơn chiều rộng 6 m và bình phương độ dài đường chéo gấp 5 lần chu vi. Xác định chiều dài và rộng của mảnh đất hình chữ nhật.
Bài 4: ( 4 điểm).
Cho đường tròn(O; R) từ một điểm M ngoài đường tròn (O; R). vẽ hai tiếp tuyến A, B. lấy C bất kì trên cung nhỏ AB. Gọi D, E, F lần lượt là hình chiếu vuông góc của C tên AB, AM, BM.
a/ cm AECD Nội tiếp một đường tròn .
Bài 1: (1,5 điểm)
1/. tính:
2/.Hãy rút gọn: , điều kiện x > 0 và x 1
Bài 2: (1,5 điểm)
1/. Cho hai đường thẳng : y = (m+1) x + 5 ; : y = 2x + n. Với giá trị nào của m, n thì trùng với?
2/.Vẽ trên cùng mp tọa độ hai đồ thị (P): y ; d: y = 6 x . Tìm tọa độ giao điểm của (P) và d bằng phép toán .
Bài 3: (2,0 điểm) Cho pt: x2 +2 (m+3) x +m2 +3 = 0
1/ Tìm m để ptcó nghiệm kép ? Hãy tính nghiệm kép đó.
2/ Tìm m để phương trình có hai nghiệm x1 , x2 thỏa x1 – x2 = 2 ?
Bài 4 : (1,5 điểm) Giải các phương trình sau :
1/ 2/ x4 + 3x2 – 4 = 0
Bài 5 : (3,5 điểm)
Cho đường tròn (O ; R) đường kính AB và dây CD vuông góc với nhau (CA < CB). Hai tia BC và DA cắt nhau tại E. Từ E kẻ EH vuông góc với AB tại H ; EH cắt CA ở F. Chứng minh rằng :
1/ Tứ giác CDFE nội tiếp được trong một đường tròn.
2/ Ba điểm B , D , F thẳng hàng.
3/ HC là tiếp tuyến của đường tròn (O).
----------------- Hết ----------------
MĐ 001
Bài 1 (2.0 điểm )
1. Tìm x để mỗi biểu thức sau có nghĩa: a) ; b)
2. Trục căn thức ở mẫu: a) b)
3. Giải hệ phương trình :
Bài 2 (3.0 điểm )
Cho hàm số y = x2 và y = x + 2
a) Vẽ đồ thị của các hàm số này trên cùng một mp tọa độ Oxy
b) Tìm tọa độ các giao điểm A,B của đồ thị hai hàm số trên bằng phép tính
c) Tính diện tích tam giác OAB
Bài 3 (1.0 điểm )
Cho phương trình x2 – 2mx + m 2 – m + 3 có hai nghiệm x1 ; x 2 (với m là tham số ) .Tìm biểu thức x12 + x22 đạt giá trị nhỏ nhất.
Bài 4 (4.0 điểm )
Cho đt (O : AC/2) .Vẽ dây BD AC tại K ( K nằm giữa A và O).Lấy điểm E trên cung nhỏ CD ( E không trùng C và D), AE cắt BD tại H.
CMR : CBD cân và tứ giác CEHK nội tiếp.
Chứng minh rằng AD2 = AH . AE.
Cho BD = 24 cm , BC =20cm .Tính chu vi của hình tròn (O).
Cho góc BCD bằng α . Trên mặt phẳng bờ BC không chứa điểm A , vẽ tam giác MBC cân tại M .Tính góc MBC theo α để M thuộc đường tròn (O).
======Hết======
MĐ 002
Bài 1: (2 điểm) (không dùng máy tính bỏ túi)
a) Cho biết A= và B= . Hãy so sánh A+B và AB.
2x +y = 1
b) Giải hệ phương trình:
3x – 2 y= 12
Bài 2: (2.5 điểm)
Cho (P) : y= x2 và (d): y=mx-2 (m là tham số m 0)
a/ Vẽ đồ thị (P) trên mặt phẳng toạ độ Oxy.
b/ Khi m = 3, hãy tìm toạ độ giao điểm (p) và ( d)
c/ Gọi A(xA;yA), B(xA;yB) là hai giao điểm phân biệt của (P) và ( d). Tìm các gia trị của m sao cho : yA + yB = 2(xA + xB )-1.
Bài 3: (1.5 điểm)
Cho một mảnh đất hình chữ nhật có chiểu dai hơn chiều rộng 6 m và bình phương độ dài đường chéo gấp 5 lần chu vi. Xác định chiều dài và rộng của mảnh đất hình chữ nhật.
Bài 4: ( 4 điểm).
Cho đường tròn(O; R) từ một điểm M ngoài đường tròn (O; R). vẽ hai tiếp tuyến A, B. lấy C bất kì trên cung nhỏ AB. Gọi D, E, F lần lượt là hình chiếu vuông góc của C tên AB, AM, BM.
a/ cm AECD Nội tiếp một đường tròn .
* Một số tài liệu cũ có thể bị lỗi font khi hiển thị do dùng bộ mã không phải Unikey ...
Người chia sẻ: Nguyễn Văn Hải Quỳnh
Dung lượng: 796,50KB|
Lượt tài: 10
Loại file: doc
Nguồn : Chưa rõ
(Tài liệu chưa được thẩm định)