De HSG hot
Chia sẻ bởi Huỳnh Hoàng Hạnh |
Ngày 14/10/2018 |
28
Chia sẻ tài liệu: de HSG hot thuộc Vật lí 9
Nội dung tài liệu:
Bài 1. (2 điểm)
Cho
a, Hãy rút gọn biểu thức A
b, Tìm x thoả mãn .
Bài 2. (2 điểm)
Cho phương trình: x2 - 4( m – 1 )x + 4m – 5 = 0. (1)
a, Tìm m để phương trình (1) có hai nghiệm x1, x2 thoả mãn .
b, Tìm m để P = có giá trị nhỏ nhất.
Bài 3. (2,5 điểm)
Cho tam giác ABC nội tiếp trong đường tròn O và đường kính DE vuông góc với BC. Gọi D1E1 và D2E2 là hình chiếu vuông góc của DE trên AB và AC.
Chứng minh BE1 = E2C = AD1; D1E1 = AC và D2E2 = AB.
Các tứ giác AD1DD2 ; AE1EE2 nội tiếp trong một đường tròn và D1D2 vuông góc với E1E2.
Bài 4. (2 điểm)
Cho hình chopSABC có SA AB; SA AC; BA BC; BA = BC; AC = ; SA = 2a.
a, Chứng minh BC mp(SAB)
b, Tính diện tích toàn phần của chóp SABC.
Bài 5. (1,5 điểm)
Cho các số thực a1; a2; ….; a2003 thoả mãn: a1 + a2 + …+ a2003 = 1.
Chứng minh: .
--------------------------------------------- Hết ------------------------------------------------
Bài 1. (2 điểm)
Gọi x1, x2 là các nghiệm của phương trình: 2x2 + 2mx + m2 – 2 = 0.
Với giá trị nào của m thì: .
Tìm giá trị lớn nhất của biểu thức: A = .
Bài 2. (1,5 điểm)
Giải phương trình: (x2 + 3x + 2)(x2 + 7x + 12) = 120.
Bài 3. (2 điểm)
Giải hệ phương trình: .
Bài 4. (3,5 điểm)
Cho M là điểm thay đổi trên đường tròn (O), đường kính AB. Đường tròn (E) tâm E tiếp xúc trong với đường tròn (O) tại M và AB tại N. Đường thẳng MA, MB cắt đường tròn (E) tại các điểm thứ hai C và D khác M.
Chứng minh CD song song với AB.
Gọi giao điểm của MN với đường tròn (O) là K (K khác M). Chứng minh rằng khi M thay đổi thì điểm K cố định và tích KM.KN không đổi.
Gọi giao điểm của CN với KB là C và giao điểm của DN với KA là D. Tìm vị trí của M để chu vi tam giác NCD nhỏ nhất.
Bài 5. (1 điểm)
Tìm giá trị nhỏ nhất của biểu thức: y = .
---------------------------------------------- Hết ------------------------------------------------
Bài 1. (1,0 điểm)
Cho hai phương trình: x2 + ax + 1 = 0 và x2 + bx + 17 = 0. Biết hai phương trình có nghiệm chung và nhỏ nhấ. Tìm a và b.
Bài 2. (2 điểm)
Giải phương trình: .
Bài 3. (2,5 điểm)
Giải hệ phương trình: .
Tìm nghiệm nguyên của phương trình: x3 + y3 + 6xy = 21.
Bài 4. (2,5 điểm)
Cho tam giác nhọn ABC nội tiếp đường tròn (O) tâm O. M là điểm chính giữa cung BC không chứa điểm A. Gọi M là điểm đối xứng với M qua O. Các đường phân giác trong góc B và góc C của tam giác ABC cắt đường thẳng AM lần lượt tại E và F.
Chứng minh tứ giác BCÈ nội tiếp được trong đường tròn.
Biết đường tròn nội tiếp tam giác ABC có tâm I bán kính r.
Chứng minh: IB.IC = 2r.IM.
Bài 5. (2 điểm)
1. Cho các số a, b thoả mãn các điều kiện : , và a + b = 11. Tìm giá trị lớn nhất của tích P = ab.
2. Trong mặt phẳng (P) cho ba tia chung gốc và phân biệt Ox, Oy, Oz. Tio Ot không thuộc (P) và . Chứng minh Ot vuông góc với mặt phẳng (P).
--------------------------------------------- Hết -------------------------------------------------
Bài 1. (2 điểm)
Giải phương trình:
Chứng minh phương trình: ax2 + bx + c = 0 (a0) luôn có hai nghiệm phân biệt. Biết rằng 5a – b + 2c = 0.
Bài 2. (2,5 điểm)
Cho hệ phương trình: (m là tham số)
Giải hệ phương trình với m = -1.
Với giá trị nào của m thì hệ phương trình đã cho vô nghiệm.
Bài 3. (3 điểm)
Cho hình vuông ABCD. Điểm M
Cho
a, Hãy rút gọn biểu thức A
b, Tìm x thoả mãn .
Bài 2. (2 điểm)
Cho phương trình: x2 - 4( m – 1 )x + 4m – 5 = 0. (1)
a, Tìm m để phương trình (1) có hai nghiệm x1, x2 thoả mãn .
b, Tìm m để P = có giá trị nhỏ nhất.
Bài 3. (2,5 điểm)
Cho tam giác ABC nội tiếp trong đường tròn O và đường kính DE vuông góc với BC. Gọi D1E1 và D2E2 là hình chiếu vuông góc của DE trên AB và AC.
Chứng minh BE1 = E2C = AD1; D1E1 = AC và D2E2 = AB.
Các tứ giác AD1DD2 ; AE1EE2 nội tiếp trong một đường tròn và D1D2 vuông góc với E1E2.
Bài 4. (2 điểm)
Cho hình chopSABC có SA AB; SA AC; BA BC; BA = BC; AC = ; SA = 2a.
a, Chứng minh BC mp(SAB)
b, Tính diện tích toàn phần của chóp SABC.
Bài 5. (1,5 điểm)
Cho các số thực a1; a2; ….; a2003 thoả mãn: a1 + a2 + …+ a2003 = 1.
Chứng minh: .
--------------------------------------------- Hết ------------------------------------------------
Bài 1. (2 điểm)
Gọi x1, x2 là các nghiệm của phương trình: 2x2 + 2mx + m2 – 2 = 0.
Với giá trị nào của m thì: .
Tìm giá trị lớn nhất của biểu thức: A = .
Bài 2. (1,5 điểm)
Giải phương trình: (x2 + 3x + 2)(x2 + 7x + 12) = 120.
Bài 3. (2 điểm)
Giải hệ phương trình: .
Bài 4. (3,5 điểm)
Cho M là điểm thay đổi trên đường tròn (O), đường kính AB. Đường tròn (E) tâm E tiếp xúc trong với đường tròn (O) tại M và AB tại N. Đường thẳng MA, MB cắt đường tròn (E) tại các điểm thứ hai C và D khác M.
Chứng minh CD song song với AB.
Gọi giao điểm của MN với đường tròn (O) là K (K khác M). Chứng minh rằng khi M thay đổi thì điểm K cố định và tích KM.KN không đổi.
Gọi giao điểm của CN với KB là C và giao điểm của DN với KA là D. Tìm vị trí của M để chu vi tam giác NCD nhỏ nhất.
Bài 5. (1 điểm)
Tìm giá trị nhỏ nhất của biểu thức: y = .
---------------------------------------------- Hết ------------------------------------------------
Bài 1. (1,0 điểm)
Cho hai phương trình: x2 + ax + 1 = 0 và x2 + bx + 17 = 0. Biết hai phương trình có nghiệm chung và nhỏ nhấ. Tìm a và b.
Bài 2. (2 điểm)
Giải phương trình: .
Bài 3. (2,5 điểm)
Giải hệ phương trình: .
Tìm nghiệm nguyên của phương trình: x3 + y3 + 6xy = 21.
Bài 4. (2,5 điểm)
Cho tam giác nhọn ABC nội tiếp đường tròn (O) tâm O. M là điểm chính giữa cung BC không chứa điểm A. Gọi M là điểm đối xứng với M qua O. Các đường phân giác trong góc B và góc C của tam giác ABC cắt đường thẳng AM lần lượt tại E và F.
Chứng minh tứ giác BCÈ nội tiếp được trong đường tròn.
Biết đường tròn nội tiếp tam giác ABC có tâm I bán kính r.
Chứng minh: IB.IC = 2r.IM.
Bài 5. (2 điểm)
1. Cho các số a, b thoả mãn các điều kiện : , và a + b = 11. Tìm giá trị lớn nhất của tích P = ab.
2. Trong mặt phẳng (P) cho ba tia chung gốc và phân biệt Ox, Oy, Oz. Tio Ot không thuộc (P) và . Chứng minh Ot vuông góc với mặt phẳng (P).
--------------------------------------------- Hết -------------------------------------------------
Bài 1. (2 điểm)
Giải phương trình:
Chứng minh phương trình: ax2 + bx + c = 0 (a0) luôn có hai nghiệm phân biệt. Biết rằng 5a – b + 2c = 0.
Bài 2. (2,5 điểm)
Cho hệ phương trình: (m là tham số)
Giải hệ phương trình với m = -1.
Với giá trị nào của m thì hệ phương trình đã cho vô nghiệm.
Bài 3. (3 điểm)
Cho hình vuông ABCD. Điểm M
* Một số tài liệu cũ có thể bị lỗi font khi hiển thị do dùng bộ mã không phải Unikey ...
Người chia sẻ: Huỳnh Hoàng Hạnh
Dung lượng: 321,50KB|
Lượt tài: 0
Loại file: doc
Nguồn : Chưa rõ
(Tài liệu chưa được thẩm định)