De hoc sinh gioi
Chia sẻ bởi Đặng Xuân Sơn |
Ngày 15/10/2018 |
38
Chia sẻ tài liệu: de hoc sinh gioi thuộc Sinh học 8
Nội dung tài liệu:
Trường THCS Bình Phú
Lớp:……………………
Họ và tên:………………
BÀI THI HSG CẤP TRƯỜNG
MÔN: TOÁN 8
Thời gian: 120 phút
Điểm
Lời phê của thầy, cô giáo
Đề bài
Câu 1: Cho biểu thức:
a/ Rút gọn P.
b/ Tìm các giá trị của x để P = 0; P = 1.
c/ Tìm các giá trị của x để P > 0.
Câu 2: Giải các phương trình sau :
a/
b/
c/ I x - +I x+ 2I = 7
Câu 3: Cho a,b,c,d,e là các số thực. Chứng minh rằng :
Câu 4: Trong một lớp có 14 học sinh giỏi Toán, 13 học sinh giỏi Văn. Số học sinh vừa giỏi Toán, vừa giỏi Văn bằng một nửa số học sinh không giỏi Toán mà cũng không giỏi Văn. Hỏi có bao nhiêu học sinh vừa giỏi Toán vừa giỏi Văn. Biết số học sinh của lớp đó là 35 em.
Câu 5: Cho hình vuông ABCD cạnh a. Gọi E là một điểm trên cạnh BC. Qua E kẻ tia Ax vuông góc với AE. Ax cắt CD tại F, trung tuyến AI của tam giác AEF cắt CD ở K. Đường thẳng kẻ qua E song song với AB cắt AI ở G. Chứng minh rằng:
a/ AE = AF và tứ giác EGKF là hình thoi.
b/ Tam giác AKF đồng dạng với tam giác CAF và AF2 = FK . FC.
c/ Khi E thay đổi trên BC. Chứng minh rằng EK = BE + DK và chu vi tam giác EKC không đổi.
Câu 6: Tìm nghiệm nguyên của bất phương trình sau:
Lớp:……………………
Họ và tên:………………
BÀI THI HSG CẤP TRƯỜNG
MÔN: TOÁN 8
Thời gian: 120 phút
Điểm
Lời phê của thầy, cô giáo
Đề bài
Câu 1: Cho biểu thức:
a/ Rút gọn P.
b/ Tìm các giá trị của x để P = 0; P = 1.
c/ Tìm các giá trị của x để P > 0.
Câu 2: Giải các phương trình sau :
a/
b/
c/ I x - +I x+ 2I = 7
Câu 3: Cho a,b,c,d,e là các số thực. Chứng minh rằng :
Câu 4: Trong một lớp có 14 học sinh giỏi Toán, 13 học sinh giỏi Văn. Số học sinh vừa giỏi Toán, vừa giỏi Văn bằng một nửa số học sinh không giỏi Toán mà cũng không giỏi Văn. Hỏi có bao nhiêu học sinh vừa giỏi Toán vừa giỏi Văn. Biết số học sinh của lớp đó là 35 em.
Câu 5: Cho hình vuông ABCD cạnh a. Gọi E là một điểm trên cạnh BC. Qua E kẻ tia Ax vuông góc với AE. Ax cắt CD tại F, trung tuyến AI của tam giác AEF cắt CD ở K. Đường thẳng kẻ qua E song song với AB cắt AI ở G. Chứng minh rằng:
a/ AE = AF và tứ giác EGKF là hình thoi.
b/ Tam giác AKF đồng dạng với tam giác CAF và AF2 = FK . FC.
c/ Khi E thay đổi trên BC. Chứng minh rằng EK = BE + DK và chu vi tam giác EKC không đổi.
Câu 6: Tìm nghiệm nguyên của bất phương trình sau:
* Một số tài liệu cũ có thể bị lỗi font khi hiển thị do dùng bộ mã không phải Unikey ...
Người chia sẻ: Đặng Xuân Sơn
Dung lượng: 26,50KB|
Lượt tài: 0
Loại file: doc
Nguồn : Chưa rõ
(Tài liệu chưa được thẩm định)