Đề & ĐA Toán 8 HKI Đinh Tiên Hoàng 2016-2017
Chia sẻ bởi Đỗ Việt Phương |
Ngày 12/10/2018 |
136
Chia sẻ tài liệu: Đề & ĐA Toán 8 HKI Đinh Tiên Hoàng 2016-2017 thuộc Đại số 8
Nội dung tài liệu:
TRƯỜNG THCS ĐINH TIÊN HOÀNG
TỔ TOÁN LÝ
KIỂM TRA HỌC KỲ 1
MÔN TOÁN 8.
NĂM HỌC 2015 – 2016.
ĐỀ CHÍNH THỨC
Câu 1: ( 2,0 điểm)
a) Viết hai hằng đẳng thức bất kỳ trong số 7 hằng đẳng thức đã học.
b) Tìm x, biết: .
Câu 2: ( 2,0điểm) Cho đa thức .
Chia đa thức P(x) cho x – 1.
b) Hãy chỉ ra thương và số dư trong phép chia trên.
Câu 3: ( 2,5 điểm) Cho phân thức:
Tìm điều kiện của x để A có nghĩa.
Rút gọn A.
Tìm các giá trị nguyên của x để A có giá trị nguyên.
Câu 4: (1,0 điểm) Cho hình thang ABCD( AB // CD) có . Gọi M là trung điểm của cạnh bên BC. Chứng minh rằng MA = MD.
Câu 5: ( 2,5 điểm) Cho hình vuông ABCD. Gọi E, F lần lượt là trung điểm của AB và BC; M là giao điểm của CE và DF.
Chứng minh rằng . Từ đó chứng minh rằng .
Gọi I là trung điểm của CD. Tứ giác AICE là hình gì?
Chứng minh rằng AM = AB.
--HẾT--
ĐÁP ÁN ĐỀ KIỂM TRA HỌC KỲ I. MÔN TOÁN 8
NĂM HỌC 2015 – 2016.
CÂU
ĐÁP ÁN
ĐIỂM
1
a)
Viết đúng 2 trong số 7 hằng đẳng thức sau:
0,5
0,5
b)
0,5
0,5
2
a)
1
b)
Thương của phép chia:
Dư của phép chia : 3
0,5
0,5
3
a)
Điều kiện xác định: .
0,5
b)
Rút gọn:
0,5
0,5
c)
0,5
0,5
4
Kẻ MH AD. Ta có: MH // AB và MB = MC.
Suy ra: HA = HD.
Do đó, MH là đường trung trực của đoạn thẳng AD. Nên MA = MD
0,5
0,5
5
a)
Ta có: BCE = CDF(2 cạnh góc vuông)
. Do đó, Suy ra: . Vậy, CE DF.
0,5
0,5
b)
Ta có: AE = CI ; AE // CI suy ra: AICE là hình bình hành
0,5
c)
Ta có: AI // CE nên AI DF. Mà tam giác MCD vuông tại M có MI là đường trung tuyến ứng với cạnh huyền CD nên IM = ID.
Suy ra, IA là đường trung trực của đoạn thẳng DM.
Hay, AM = AD = AB.
0,5
0,5
Ghi chú: Hs giải cách khác nhưng đúng thì vẫn cho điểm tối đa.
TRƯỜNG THCS ĐINH TIÊN HOÀNG
TỔ TOÁN LÝ
KIỂM TRA HỌC KỲ 1
MÔN TOÁN 8.
NĂM HỌC 2015 – 2016.
ĐỀ DỰ BỊ
Câu 1: ( 2,0 điểm)
a) Viết hai hằng đẳng thức bất kỳ trong số 7 hằng đẳng thức đã học.
b) Tìm x, biết: .
Câu 2: ( 2,0điểm) Cho đa thức .
Chia đa thức P(x) cho x +2.
b) Hãy chỉ ra thương và số dư trong phép chia trên.
Câu 3: ( 2,5 điểm) Cho phân thức:
Tìm điều kiện của x để A có nghĩa.
Rút gọn A.
Tìm các giá trị nguyên của x để A có giá trị nguyên.
Câu 4: (1,0 điểm) Cho hình thang MNPQ( MN // PQ) có . Gọi K là trung điểm của cạnh bên NP. Chứng minh rằng KM = KQ.
Câu 5: ( 2,5 điểm) Cho hình vuông ABCD. Gọi M, N lần lượt là trung điểm của AB và BC; I là giao điểm của CM và DN.
Chứng minh rằng . Từ đó chứng minh rằng .
Gọi O là trung điểm của CD. Tứ giác AOCM là hình gì?
Chứng minh rằng AI = AB.
--HẾT--
ĐÁP ÁN ĐỀ KIỂM TRA HỌC KỲ I. MÔN TOÁN 8
NĂM HỌC 2015
TỔ TOÁN LÝ
KIỂM TRA HỌC KỲ 1
MÔN TOÁN 8.
NĂM HỌC 2015 – 2016.
ĐỀ CHÍNH THỨC
Câu 1: ( 2,0 điểm)
a) Viết hai hằng đẳng thức bất kỳ trong số 7 hằng đẳng thức đã học.
b) Tìm x, biết: .
Câu 2: ( 2,0điểm) Cho đa thức .
Chia đa thức P(x) cho x – 1.
b) Hãy chỉ ra thương và số dư trong phép chia trên.
Câu 3: ( 2,5 điểm) Cho phân thức:
Tìm điều kiện của x để A có nghĩa.
Rút gọn A.
Tìm các giá trị nguyên của x để A có giá trị nguyên.
Câu 4: (1,0 điểm) Cho hình thang ABCD( AB // CD) có . Gọi M là trung điểm của cạnh bên BC. Chứng minh rằng MA = MD.
Câu 5: ( 2,5 điểm) Cho hình vuông ABCD. Gọi E, F lần lượt là trung điểm của AB và BC; M là giao điểm của CE và DF.
Chứng minh rằng . Từ đó chứng minh rằng .
Gọi I là trung điểm của CD. Tứ giác AICE là hình gì?
Chứng minh rằng AM = AB.
--HẾT--
ĐÁP ÁN ĐỀ KIỂM TRA HỌC KỲ I. MÔN TOÁN 8
NĂM HỌC 2015 – 2016.
CÂU
ĐÁP ÁN
ĐIỂM
1
a)
Viết đúng 2 trong số 7 hằng đẳng thức sau:
0,5
0,5
b)
0,5
0,5
2
a)
1
b)
Thương của phép chia:
Dư của phép chia : 3
0,5
0,5
3
a)
Điều kiện xác định: .
0,5
b)
Rút gọn:
0,5
0,5
c)
0,5
0,5
4
Kẻ MH AD. Ta có: MH // AB và MB = MC.
Suy ra: HA = HD.
Do đó, MH là đường trung trực của đoạn thẳng AD. Nên MA = MD
0,5
0,5
5
a)
Ta có: BCE = CDF(2 cạnh góc vuông)
. Do đó, Suy ra: . Vậy, CE DF.
0,5
0,5
b)
Ta có: AE = CI ; AE // CI suy ra: AICE là hình bình hành
0,5
c)
Ta có: AI // CE nên AI DF. Mà tam giác MCD vuông tại M có MI là đường trung tuyến ứng với cạnh huyền CD nên IM = ID.
Suy ra, IA là đường trung trực của đoạn thẳng DM.
Hay, AM = AD = AB.
0,5
0,5
Ghi chú: Hs giải cách khác nhưng đúng thì vẫn cho điểm tối đa.
TRƯỜNG THCS ĐINH TIÊN HOÀNG
TỔ TOÁN LÝ
KIỂM TRA HỌC KỲ 1
MÔN TOÁN 8.
NĂM HỌC 2015 – 2016.
ĐỀ DỰ BỊ
Câu 1: ( 2,0 điểm)
a) Viết hai hằng đẳng thức bất kỳ trong số 7 hằng đẳng thức đã học.
b) Tìm x, biết: .
Câu 2: ( 2,0điểm) Cho đa thức .
Chia đa thức P(x) cho x +2.
b) Hãy chỉ ra thương và số dư trong phép chia trên.
Câu 3: ( 2,5 điểm) Cho phân thức:
Tìm điều kiện của x để A có nghĩa.
Rút gọn A.
Tìm các giá trị nguyên của x để A có giá trị nguyên.
Câu 4: (1,0 điểm) Cho hình thang MNPQ( MN // PQ) có . Gọi K là trung điểm của cạnh bên NP. Chứng minh rằng KM = KQ.
Câu 5: ( 2,5 điểm) Cho hình vuông ABCD. Gọi M, N lần lượt là trung điểm của AB và BC; I là giao điểm của CM và DN.
Chứng minh rằng . Từ đó chứng minh rằng .
Gọi O là trung điểm của CD. Tứ giác AOCM là hình gì?
Chứng minh rằng AI = AB.
--HẾT--
ĐÁP ÁN ĐỀ KIỂM TRA HỌC KỲ I. MÔN TOÁN 8
NĂM HỌC 2015
* Một số tài liệu cũ có thể bị lỗi font khi hiển thị do dùng bộ mã không phải Unikey ...
Người chia sẻ: Đỗ Việt Phương
Dung lượng: 164,00KB|
Lượt tài: 3
Loại file: doc
Nguồn : Chưa rõ
(Tài liệu chưa được thẩm định)