Đề cương ôn tập vào THPT
Chia sẻ bởi Nguyªn Minh Th¾Ng |
Ngày 11/10/2018 |
31
Chia sẻ tài liệu: Đề cương ôn tập vào THPT thuộc Ngữ văn 8
Nội dung tài liệu:
Chuyên đề 1: Biến đổi biểu thức đại số
1. Một số kỹ năng cơ bản
Bài 1: Khai triển các hằng đẳng thức
1)
2)
3)
4)
5)
6)
7)
8)
9)
10)
11)
12)
Bài 2: Phân tích thành các lũy thừa bậc hai
1)
2)
3)
4)
5)
6)
7)
8)
9)
10) Bài 3: Phân tích thành nhân tử
1)
2)
3)
4)
5)
6) 25 – 3x2
7) x – 4 (x > 0)
8) 11 + 9x (x < 0)
9) 31 + 7x (x < 0)
10)
Bài 4: Tính:
HD: Ta có: và và . Từ đó suy ra:
Bài 5: Tìm giá trị của x để
1) x2 − 2x + 7 có giá trị nhỏ nhất 2) có giá trị lớn nhất
3) có giá trị lớn nhất 4) có giá trị nhỏ nhất
Bài 6: Tìm các giá trị của x ( Z để các biểu thức sau có giá trị nguyên
1) A = 2) B = 3) C = 4) D =
Bài 7: Giải các bất phương trình
1) 5(x − 2) + 3 > 1 − 2(x − 1) 2) 5 + 3x(x + 3) < (3x − 1)(x + 2)
3) 4)
2. Bài tập tổng hợp
Bài 8: Cho biểu thức:
a) Rút gọn biểu thức A
b) Tính giá trị của biểu thức A khi
c) Tìm giá trị của x khi A =
HD: a) ĐK: x ≠ ±1: ;
b) . Khi đó: A = −2 ; c) ;
Bài 9: Cho biểu thức:
a) Tìm điều kiện của x để A xác định
b) Rút gọn biểu thức A
c) Tìm giá trị của x để A > 0
HD: a) a ≠ −3, a ≠ 2 ; b) ; c) A > 0 ( x > 2 hoặc x < −1
Bài 10: Cho biểu thức
a) Tìm điều kiện đối với a để biểu thức C xác định. Rút gọn biểu thức C
b) Tìm các giá trị của a để C = 1
c) Khi nào thì C có giá trị dương? Có giá trị âm?
HD: a) a ≠ −3, a ≠ ±2; b) ; c) C = 1 ( ; d) C > 0 ( ; C < 0 ( a < −3
Bài 11: Cho biểu thức
a) Tìm điều kiện đối với x để biểu thức C xác định
b) Rút gọn biểu thức C
c) Tính giá trị của biểu thức C khi
d) Tìm các giá trị nguyên của x để C có giá trị nguyên
HD: a) x ≠ 1, x ≠ −2, x ≠ 0; b) ; c) ; d) x ( {−1, −3, −4, −6, 2}
Bài 12: Cho biểu thức:
a) Với giá trị nào của a thì biểu thức A không xác định
b) Rút gọn biểu thức A
c) Với giá trị nguyên nào của a thì A có giá trị nguyên?
HD: a) A không xác định ( a < 0, a = 0, 1, 2.
b) Với a > 0, a ≠ 1, a ≠ 2: ; c) có duy nhất a = 6 thỏa mãn.
Bài 13: Cho biểu thức:
a) Rút gọn biểu thức B
b) Tính giá trị của B khi
c) Với giá trị nào của x thì B >
1. Một số kỹ năng cơ bản
Bài 1: Khai triển các hằng đẳng thức
1)
2)
3)
4)
5)
6)
7)
8)
9)
10)
11)
12)
Bài 2: Phân tích thành các lũy thừa bậc hai
1)
2)
3)
4)
5)
6)
7)
8)
9)
10) Bài 3: Phân tích thành nhân tử
1)
2)
3)
4)
5)
6) 25 – 3x2
7) x – 4 (x > 0)
8) 11 + 9x (x < 0)
9) 31 + 7x (x < 0)
10)
Bài 4: Tính:
HD: Ta có: và và . Từ đó suy ra:
Bài 5: Tìm giá trị của x để
1) x2 − 2x + 7 có giá trị nhỏ nhất 2) có giá trị lớn nhất
3) có giá trị lớn nhất 4) có giá trị nhỏ nhất
Bài 6: Tìm các giá trị của x ( Z để các biểu thức sau có giá trị nguyên
1) A = 2) B = 3) C = 4) D =
Bài 7: Giải các bất phương trình
1) 5(x − 2) + 3 > 1 − 2(x − 1) 2) 5 + 3x(x + 3) < (3x − 1)(x + 2)
3) 4)
2. Bài tập tổng hợp
Bài 8: Cho biểu thức:
a) Rút gọn biểu thức A
b) Tính giá trị của biểu thức A khi
c) Tìm giá trị của x khi A =
HD: a) ĐK: x ≠ ±1: ;
b) . Khi đó: A = −2 ; c) ;
Bài 9: Cho biểu thức:
a) Tìm điều kiện của x để A xác định
b) Rút gọn biểu thức A
c) Tìm giá trị của x để A > 0
HD: a) a ≠ −3, a ≠ 2 ; b) ; c) A > 0 ( x > 2 hoặc x < −1
Bài 10: Cho biểu thức
a) Tìm điều kiện đối với a để biểu thức C xác định. Rút gọn biểu thức C
b) Tìm các giá trị của a để C = 1
c) Khi nào thì C có giá trị dương? Có giá trị âm?
HD: a) a ≠ −3, a ≠ ±2; b) ; c) C = 1 ( ; d) C > 0 ( ; C < 0 ( a < −3
Bài 11: Cho biểu thức
a) Tìm điều kiện đối với x để biểu thức C xác định
b) Rút gọn biểu thức C
c) Tính giá trị của biểu thức C khi
d) Tìm các giá trị nguyên của x để C có giá trị nguyên
HD: a) x ≠ 1, x ≠ −2, x ≠ 0; b) ; c) ; d) x ( {−1, −3, −4, −6, 2}
Bài 12: Cho biểu thức:
a) Với giá trị nào của a thì biểu thức A không xác định
b) Rút gọn biểu thức A
c) Với giá trị nguyên nào của a thì A có giá trị nguyên?
HD: a) A không xác định ( a < 0, a = 0, 1, 2.
b) Với a > 0, a ≠ 1, a ≠ 2: ; c) có duy nhất a = 6 thỏa mãn.
Bài 13: Cho biểu thức:
a) Rút gọn biểu thức B
b) Tính giá trị của B khi
c) Với giá trị nào của x thì B >
* Một số tài liệu cũ có thể bị lỗi font khi hiển thị do dùng bộ mã không phải Unikey ...
Người chia sẻ: Nguyªn Minh Th¾Ng
Dung lượng: 672,50KB|
Lượt tài: 1
Loại file: doc
Nguồn : Chưa rõ
(Tài liệu chưa được thẩm định)