CHUYEN DE PHUONG TRINH CO BAN
Chia sẻ bởi Hàng Minh Khang |
Ngày 13/10/2018 |
47
Chia sẻ tài liệu: CHUYEN DE PHUONG TRINH CO BAN thuộc Đại số 8
Nội dung tài liệu:
CHUYÊN ĐỀ : PHƯƠNG TRỈNH CƠ BẢN
===ooo===
Tóm tắt lý thuyết
Hai phương trình gọi là tương đương với nhau khi chúng có chung tập hợp nghiệm. Khi nói hai phương trình tương đương với nhau ta phải chú ý rằng các phương trình đó được xét trên tập hợp số nào, có khi trên tập này thì tương đương nhưng trên tập khác thì lại không.
Phương trình bậc nhất một ẩn là phương trình có dạng ax + b = 0 (a ( 0). Thông thường để giải phương trình này ta chuyển những đơn thức có chứa biến về một vế, những đơn thức không chứa biến về một vế.
Phương trình quy về phương trình bậc nhất
Dùng các phép biến đổi như: nhân đa thức, quy đồng mẫu số, chuyển vế…để đưa phương trình đã cho về dạng ax + b = 0.
Phương trình tích là những phương trình sau khi biến đổi có dạng:
A(x) . B(x) = 0 ( A(x) = 0 hoặc B(x) = 0
Phương trình chứa ẩn ở mẫu: ngoài những phương trình có cách giải đặc biệt, đa số các phương trình đều giải theo các bước sau:
Tìm điều kiện xác định (ĐKXĐ).
Quy đồng mẫu thức và bỏ mẫu.
Giải phương trình sau khi bỏ mẫu.
Kiểm tra xem các nghiệm vừa tìm được có thỏa ĐKXĐ không. Chú ý chỉ rõ nghiệm nào thỏa, nghiệm nào không thỏa.
Kết luận số nghiệm của phương trình đã cho là những giá trị thỏa ĐKXĐ.
Giải toán bằng cách lập phương trình:
Bước 1: Lập phương trình:
Chọn ẩn số và đặt điều kiện thích hợp cho ẩn số.
Biểu diễn các đại lượng chưa biết theo ẩn và các đại lượng đã biết.
Lập phương trình bểu thị mối quan hệ giữa các đạn lượng.
Bước 2: Giải phương trình.
Bước 3: Trả lời: Kiểm tra xem trong các nghiệm của phương trình, nghiệm nào thỏa mãn điều kiện của ẩn, nghiệm nào không thỏa, rồi kết luận.
Chú ý:
Số có hai, chữ số được ký hiệu là
Giá trị của số đó là: 10a + b; (Đk: 1 ( a ( 9 và 0 ( b ( 9, a, b ( N)
Số có ba, chữ số được ký hiệu là
100a + 10b + c, (Đk: 1 ( a ( 9 và 0 ( b ( 9, 0 ( c ( 9; a, b, c ( N)
Toán chuyển động: Quãng đường = vận tốc x thời gian
Hay S = v . t
BÀI TẬP
Hãy chỉ ra các phương trình bậc nhất trong các phương trình sau:
a) 1 + x = 0 b) x + x2 = 0 c) 1 – 2t = 0 d) 3y = 0
e) 0x – 3 = 0 f) (x2 + 1)(x – 1) = 0 g) 0,5x – 3,5x = 0 h) – 2x2 + 5x = 0
Cho hai phương trình: x2 – 5x + 6 = 0 (1)
x + (x – 2)(2x + 1) = 2. (2)
Chứng minh hai phương trình có nghiệm chung là x = 2.
Chứng minh: x = 3 là nghiệm của (1) nhưng không là nghiệm của (2).
Hai phương trình đã cho có tương đương với nhau không, vì sao ?
Giải các phương trình sau:
1. a) 7x + 12 = 0 b) 5x – 2 = 0 c) 12 – 6x = 0 d) – 2x + 14 = 0
2. a) 3x + 1 = 7x – 11 b) 2x + x + 12 = 0 c) x – 5 = 3 – x d) 7 – 3x = 9 – x
e) 5 – 3x = 6x + 7 f) 11 – 2x = x – 1 g) 15 – 8x = 9 – 5x h) 3 + 2x = 5 + 2x
3. a) 0,25x + 1,5 = 0 b) 6,36 – 5,2x = 0 c) d)
Chứng tỏ rằng các phương trình sau đây vô nghiệm:
a) 2(x + 1) = 3 + 2x b) 2(1 – 1,5x) + 3x = 0 c) | x | = –1 d) x2 + 1 = 0
Giải các phương trình sau, viết số gần đúng của nghiệm ở dạng số thập phân bằng cách làm tròn đến hàng phần trăm:
a) 3x – 11 = 0 b) 12 + 7x = 0 c) 10 – 4x = 2x – 3 e) 5x + 3 = 2 – x
===ooo===
Tóm tắt lý thuyết
Hai phương trình gọi là tương đương với nhau khi chúng có chung tập hợp nghiệm. Khi nói hai phương trình tương đương với nhau ta phải chú ý rằng các phương trình đó được xét trên tập hợp số nào, có khi trên tập này thì tương đương nhưng trên tập khác thì lại không.
Phương trình bậc nhất một ẩn là phương trình có dạng ax + b = 0 (a ( 0). Thông thường để giải phương trình này ta chuyển những đơn thức có chứa biến về một vế, những đơn thức không chứa biến về một vế.
Phương trình quy về phương trình bậc nhất
Dùng các phép biến đổi như: nhân đa thức, quy đồng mẫu số, chuyển vế…để đưa phương trình đã cho về dạng ax + b = 0.
Phương trình tích là những phương trình sau khi biến đổi có dạng:
A(x) . B(x) = 0 ( A(x) = 0 hoặc B(x) = 0
Phương trình chứa ẩn ở mẫu: ngoài những phương trình có cách giải đặc biệt, đa số các phương trình đều giải theo các bước sau:
Tìm điều kiện xác định (ĐKXĐ).
Quy đồng mẫu thức và bỏ mẫu.
Giải phương trình sau khi bỏ mẫu.
Kiểm tra xem các nghiệm vừa tìm được có thỏa ĐKXĐ không. Chú ý chỉ rõ nghiệm nào thỏa, nghiệm nào không thỏa.
Kết luận số nghiệm của phương trình đã cho là những giá trị thỏa ĐKXĐ.
Giải toán bằng cách lập phương trình:
Bước 1: Lập phương trình:
Chọn ẩn số và đặt điều kiện thích hợp cho ẩn số.
Biểu diễn các đại lượng chưa biết theo ẩn và các đại lượng đã biết.
Lập phương trình bểu thị mối quan hệ giữa các đạn lượng.
Bước 2: Giải phương trình.
Bước 3: Trả lời: Kiểm tra xem trong các nghiệm của phương trình, nghiệm nào thỏa mãn điều kiện của ẩn, nghiệm nào không thỏa, rồi kết luận.
Chú ý:
Số có hai, chữ số được ký hiệu là
Giá trị của số đó là: 10a + b; (Đk: 1 ( a ( 9 và 0 ( b ( 9, a, b ( N)
Số có ba, chữ số được ký hiệu là
100a + 10b + c, (Đk: 1 ( a ( 9 và 0 ( b ( 9, 0 ( c ( 9; a, b, c ( N)
Toán chuyển động: Quãng đường = vận tốc x thời gian
Hay S = v . t
BÀI TẬP
Hãy chỉ ra các phương trình bậc nhất trong các phương trình sau:
a) 1 + x = 0 b) x + x2 = 0 c) 1 – 2t = 0 d) 3y = 0
e) 0x – 3 = 0 f) (x2 + 1)(x – 1) = 0 g) 0,5x – 3,5x = 0 h) – 2x2 + 5x = 0
Cho hai phương trình: x2 – 5x + 6 = 0 (1)
x + (x – 2)(2x + 1) = 2. (2)
Chứng minh hai phương trình có nghiệm chung là x = 2.
Chứng minh: x = 3 là nghiệm của (1) nhưng không là nghiệm của (2).
Hai phương trình đã cho có tương đương với nhau không, vì sao ?
Giải các phương trình sau:
1. a) 7x + 12 = 0 b) 5x – 2 = 0 c) 12 – 6x = 0 d) – 2x + 14 = 0
2. a) 3x + 1 = 7x – 11 b) 2x + x + 12 = 0 c) x – 5 = 3 – x d) 7 – 3x = 9 – x
e) 5 – 3x = 6x + 7 f) 11 – 2x = x – 1 g) 15 – 8x = 9 – 5x h) 3 + 2x = 5 + 2x
3. a) 0,25x + 1,5 = 0 b) 6,36 – 5,2x = 0 c) d)
Chứng tỏ rằng các phương trình sau đây vô nghiệm:
a) 2(x + 1) = 3 + 2x b) 2(1 – 1,5x) + 3x = 0 c) | x | = –1 d) x2 + 1 = 0
Giải các phương trình sau, viết số gần đúng của nghiệm ở dạng số thập phân bằng cách làm tròn đến hàng phần trăm:
a) 3x – 11 = 0 b) 12 + 7x = 0 c) 10 – 4x = 2x – 3 e) 5x + 3 = 2 – x
* Một số tài liệu cũ có thể bị lỗi font khi hiển thị do dùng bộ mã không phải Unikey ...
Người chia sẻ: Hàng Minh Khang
Dung lượng: |
Lượt tài: 3
Loại file:
Nguồn : Chưa rõ
(Tài liệu chưa được thẩm định)