Chuyên đề HSG đại số 8
Chia sẻ bởi Nhật Hoàng |
Ngày 12/10/2018 |
73
Chia sẻ tài liệu: Chuyên đề HSG đại số 8 thuộc Đại số 8
Nội dung tài liệu:
Chuyên đề: Phân tích đa thức thành nhân tử
I- Phương pháp tách một hạng tử thành nhiều hạng tử khác:
Các bài toán
Bài 1: Phân tích các đa thức sau thành nhân tử
Bài 2: Phân tích các đa thức sau thành nhân tử:
(Đa thức đã cho có nhiệm nguyên hoặc nghiệm hữu tỉ)
II- Phương pháp thêm và bớt cùng một hạng tử
1) Dạng 1: Thêm bớt cùng một hạng tử làm xuất hiện hằng đẳng thức hiệu của hai bình phương: A2 – B2 = (A – B)(A + B)
Các bài toán
Bài 1: Phân tích các đâ thức sau thành nhân tử:
2) Dạng 2: Thêm bớt cùng một hạng tử làm xuất hiện thừa số chung
Các bài toán
Bài 1: Phân tích các đâ thức sau thành nhân tử:
III- Phương pháp đổi biến
Các bài toán
Bài 1:Phân tích các đâ thức sau thành nhân tử
Bài 2: Phân tích các đâ thức sau thành nhân tử
IV- Phương pháp xét giá trị riêng
Phương pháp: Trước hết ta xác định dạng các thừa số chứa biến của đa thức, rồi gán cho các biến các giá trị cụ thể để xác định thừa số còn lại.
Ví dụ: Phân tích các đa thức sau thành nhân tử:
Giải
a, Giả sử thay x bởi y thì P =
Như vậy P chứa thừa số x – y
Ta lại thấy nếu thay x bởi y, thay y bởi z, thay z bởi x thì P không đổi(ta nói đa thức P có thể hoán vị vòng quanh bởi các biến x, y, z). Do đó nếu P đã chúa thùa số x – y thì cũng chúa thừa số y – z, z – x. Vậy P phải có dạng
P = k(x – y)(y – z)(z – x).Ta thấy k phải là hằng số(không chúa biến) vì P có bậc 3 đối với tập hợp các biến x, y, z còn tích (x – y)(y – z)(z – x) cũng có bậc ba đối với tập hợp các biến x, y, z. Vì đẳng thức
đúng với mọi x, y, z nên ta gán cho các biến x, y, z các giá trị riêng, chẳng hạn x = 2, y = 1, z = 0
ta được k = -1
P =- (x – y)(y – z)(z – x) = (x – y)(y – z)(x - z)
Các bài toán
Bài 1: Phân tích các đa thức sau thành nhân tử:
, với 2m = a+ b + c.
Bài 2: Phân tích các đa thức sau thành nhân tử
V-Phưong pháp hệ số bất định
Các bài toán
Bài 1: Phân tích các đa thức thành nhân tử
Chuyên đề 2: Xác định đa thức
* Định lí Beout (BêZu) và ứng dụng:
1) Định lí BêZu:
Dư trong phép chia đa thức f(x) cho nhị thức x - a bằng f(a) (giá trị của f(x) tại x = a):
(Beout, 1730 - 1783, nhà toán học Pháp)
Hệ quả: Nếu a là nghiệm của đa thừc f(x) thì f(x) chia hết cho x - a.
Áp dụng: Định lí BêZu có thể dùng để phân tích một đa thức thành nhân tử.
I- Phương pháp tách một hạng tử thành nhiều hạng tử khác:
Các bài toán
Bài 1: Phân tích các đa thức sau thành nhân tử
Bài 2: Phân tích các đa thức sau thành nhân tử:
(Đa thức đã cho có nhiệm nguyên hoặc nghiệm hữu tỉ)
II- Phương pháp thêm và bớt cùng một hạng tử
1) Dạng 1: Thêm bớt cùng một hạng tử làm xuất hiện hằng đẳng thức hiệu của hai bình phương: A2 – B2 = (A – B)(A + B)
Các bài toán
Bài 1: Phân tích các đâ thức sau thành nhân tử:
2) Dạng 2: Thêm bớt cùng một hạng tử làm xuất hiện thừa số chung
Các bài toán
Bài 1: Phân tích các đâ thức sau thành nhân tử:
III- Phương pháp đổi biến
Các bài toán
Bài 1:Phân tích các đâ thức sau thành nhân tử
Bài 2: Phân tích các đâ thức sau thành nhân tử
IV- Phương pháp xét giá trị riêng
Phương pháp: Trước hết ta xác định dạng các thừa số chứa biến của đa thức, rồi gán cho các biến các giá trị cụ thể để xác định thừa số còn lại.
Ví dụ: Phân tích các đa thức sau thành nhân tử:
Giải
a, Giả sử thay x bởi y thì P =
Như vậy P chứa thừa số x – y
Ta lại thấy nếu thay x bởi y, thay y bởi z, thay z bởi x thì P không đổi(ta nói đa thức P có thể hoán vị vòng quanh bởi các biến x, y, z). Do đó nếu P đã chúa thùa số x – y thì cũng chúa thừa số y – z, z – x. Vậy P phải có dạng
P = k(x – y)(y – z)(z – x).Ta thấy k phải là hằng số(không chúa biến) vì P có bậc 3 đối với tập hợp các biến x, y, z còn tích (x – y)(y – z)(z – x) cũng có bậc ba đối với tập hợp các biến x, y, z. Vì đẳng thức
đúng với mọi x, y, z nên ta gán cho các biến x, y, z các giá trị riêng, chẳng hạn x = 2, y = 1, z = 0
ta được k = -1
P =- (x – y)(y – z)(z – x) = (x – y)(y – z)(x - z)
Các bài toán
Bài 1: Phân tích các đa thức sau thành nhân tử:
, với 2m = a+ b + c.
Bài 2: Phân tích các đa thức sau thành nhân tử
V-Phưong pháp hệ số bất định
Các bài toán
Bài 1: Phân tích các đa thức thành nhân tử
Chuyên đề 2: Xác định đa thức
* Định lí Beout (BêZu) và ứng dụng:
1) Định lí BêZu:
Dư trong phép chia đa thức f(x) cho nhị thức x - a bằng f(a) (giá trị của f(x) tại x = a):
(Beout, 1730 - 1783, nhà toán học Pháp)
Hệ quả: Nếu a là nghiệm của đa thừc f(x) thì f(x) chia hết cho x - a.
Áp dụng: Định lí BêZu có thể dùng để phân tích một đa thức thành nhân tử.
* Một số tài liệu cũ có thể bị lỗi font khi hiển thị do dùng bộ mã không phải Unikey ...
Người chia sẻ: Nhật Hoàng
Dung lượng: 262,00KB|
Lượt tài: 3
Loại file: doc
Nguồn : Chưa rõ
(Tài liệu chưa được thẩm định)