Chuyên đề BDHSG - Toán 4
Chia sẻ bởi Phan Nữ La Giang |
Ngày 09/10/2018 |
23
Chia sẻ tài liệu: Chuyên đề BDHSG - Toán 4 thuộc Toán học 4
Nội dung tài liệu:
CẮT GHÉP HÌNH TRÊN GIẤY KẺ Ô VUÔNG
Việc giải bài toán cắt, ghép hình đòi hỏi phải quan sát, phân tích tổng hợp các yếu tố: đỉnh, góc, cạnh của hình ban đầu để tìm ra mối quan hệ giữa các mảnh hình sẽ cắt ra hoặc phải ghép lại theo yêu cầu bài toán. Nghĩa là phải tưởng tượng về các phép cắt thử, ghép thử so sánh giữa hình ban đầu và hình phải ghép được. Vì vậy giải bài toán cắt, ghép hình là khó và phức tạp, cũng vì vậy mà sức hấp dẫn và sự lôi kéo của các bài tập này càng lớn.
Việc vẽ hình trên giấy kẻ ô vuông sẽ giúp ta dễ hình dung hơn phần nào được để nguyên, phần nào phải cắt, ghép và phải cắt ghép như thế nào?
Việc giải bài toán cắt ghép hình có thể tiến hành theo qui trình:
1. Vẽ hình đã cho trên giấy kẻ ô vuông sao cho có thể đếm được số ô vuông của hình vẽ. Quan sát đặc điểm các yếu tố hình đã cho: đỉnh, cạnh, góc; vị trí; hình dạng và độ lớn. Tưởng tượng ra hình cần ghép được (có thể vẽ thử trên giấy kẻ ô vuông).
2. Phân tích, đối chiếu, so sánh các yếu tố hình đã cho và cần tìm xác định các yếu tố nào đã được thỏa mãn; xác định được bộ phận nào cần cắt ghép. Thực hiện cắt ghép thử.
3. Cắt ghép theo sự phân tích bước 2.
4. Kiểm tra các yêu cầu của bài toán, tìm các cách ghép khác và chọn cách tốt nhất.
Ví dụ 1: Có một tờ bìa hình vuông đã cắt đi 1/4 hình vuông đó ở một góc. Hãy chia hình đó thành 4 phần bằng nhau.
Bước 1: Vẽ hình đã cho trên giấy kẻ ô vuông. Hình đã cho tạo thành từ 3 ô vuông lớn, mỗi ô lại có 4 ô vuông nhỏ. Tất cả có 12 ô vuông nhỏ.
Bước 2: Hình cắt ra thành 4 mảnh bằng nhau, như vậy mỗi mảnh có 3 ô vuông nhỏ.
Nếu mỗi ô vuông lớn cũng bỏ đi một ô vuông nhỏ thì mỗi ô vuông lớn còn lại 3 ô vuông là mảnh cần cắt ra. Các ô vuông nhỏ được cắt từ ô vuông lớn khi ghép lại phải là mảnh còn lại. Vì vậy mảnh còn lại có dạng ô vuông lớn cắt đi ô vuông nhỏ, nên mảnh còn lại là phần liên thông gồm 3 ô vuông ở 3 ô vuông lớn.
Bước 3: Cắt theo đường ABDEFGH ta được 1 mảnh. Cắt mảnh còn lại theo 2 đường: FI và CD ta được 3 mảnh còn lại.
Bước 4: Bốn mảnh được cắt là: MHGFIN; HGEBA; FIKCD; CDAQP đều là 1 ô vuông lớn bỏ đi một ô vuông nhỏ còn 3 ô vuông có hình dạng như nhau và bằng nhau về độ lớn.
Ví dụ 2: Chia hình vuông thành 4 hình tam giác có diện tích bằng nhau.
Bước 1: Vẽ hình vuông trên giấy kẻ ô vuông. Hình vuông được chia thành 16 ô vuông nhỏ.
Bước 2: Mảnh được cắt ra là các tam giác có diện tích bằng nhau, mỗi tam giác có diện tích 4 ô vuông. Khi đó cạnh đáy và chiều cao tương ứng của mỗi tam giác có độ dài bằng độ dài cạnh 4 và 2 ô vuông.
Bước 3: Cắt hình vuông theo hai đường chéo AC và BD tạo ra bốn tam giác OAD; ODC; OCB và OBA bằng nhau và cùng diện tích bằng 4 ô vuông nhỏ.
Bước 4: Các tam giác OAD; ODC; OCB; OBA bằng nhau: Gấp hình vuông theo hai đường chéo ta được 4 tam giác trùng khít lên nhau, do đó nó bằng nhau và bằng nhau về diện tích.
Cách khác: Mỗi mảnh được cắt ra là một tam giác có diện tích 4 ô vuông, nên tam giác đó có cạnh và độ dài đường cao tương ứng là độ dài cạnh 4 và 2 ô vuông. Nếu lấy AB làm 1 cạnh của 1 tam giác được cắt ra thì đỉnh còn lại của tam giác thuộc đường thẳng MN, các vị trí của đỉnh có thể là M, F, O. Vì vậy ta còn có các cách giải sau:
Cách 2: Cắt theo các đường BM; CM; MN.
Cách 3: Cắt theo đường AE; BE; AF.
Ví dụ 3: Cho hình chữ nhật có độ dài cạnh là 9 cm và 16 cm. Hãy cắt hình chữ nhật thành 2 mảnh để ghép lại được 1 hình vuông.
Bước 1: Vẽ hình chữ nhật trên giấy kẻ ô vuông. Số ô vuông là: 9 x 16 = 144 (ô vuông). Hình ghép được từ hai mảnh cắt ra là hình vuông cùng diện tích là 144 ô nên mỗi cạnh hình vuông độ dài là cạnh 12 ô vuông.
Bước 2: Hình vuông ghép lại từ hai mảnh có
Việc giải bài toán cắt, ghép hình đòi hỏi phải quan sát, phân tích tổng hợp các yếu tố: đỉnh, góc, cạnh của hình ban đầu để tìm ra mối quan hệ giữa các mảnh hình sẽ cắt ra hoặc phải ghép lại theo yêu cầu bài toán. Nghĩa là phải tưởng tượng về các phép cắt thử, ghép thử so sánh giữa hình ban đầu và hình phải ghép được. Vì vậy giải bài toán cắt, ghép hình là khó và phức tạp, cũng vì vậy mà sức hấp dẫn và sự lôi kéo của các bài tập này càng lớn.
Việc vẽ hình trên giấy kẻ ô vuông sẽ giúp ta dễ hình dung hơn phần nào được để nguyên, phần nào phải cắt, ghép và phải cắt ghép như thế nào?
Việc giải bài toán cắt ghép hình có thể tiến hành theo qui trình:
1. Vẽ hình đã cho trên giấy kẻ ô vuông sao cho có thể đếm được số ô vuông của hình vẽ. Quan sát đặc điểm các yếu tố hình đã cho: đỉnh, cạnh, góc; vị trí; hình dạng và độ lớn. Tưởng tượng ra hình cần ghép được (có thể vẽ thử trên giấy kẻ ô vuông).
2. Phân tích, đối chiếu, so sánh các yếu tố hình đã cho và cần tìm xác định các yếu tố nào đã được thỏa mãn; xác định được bộ phận nào cần cắt ghép. Thực hiện cắt ghép thử.
3. Cắt ghép theo sự phân tích bước 2.
4. Kiểm tra các yêu cầu của bài toán, tìm các cách ghép khác và chọn cách tốt nhất.
Ví dụ 1: Có một tờ bìa hình vuông đã cắt đi 1/4 hình vuông đó ở một góc. Hãy chia hình đó thành 4 phần bằng nhau.
Bước 1: Vẽ hình đã cho trên giấy kẻ ô vuông. Hình đã cho tạo thành từ 3 ô vuông lớn, mỗi ô lại có 4 ô vuông nhỏ. Tất cả có 12 ô vuông nhỏ.
Bước 2: Hình cắt ra thành 4 mảnh bằng nhau, như vậy mỗi mảnh có 3 ô vuông nhỏ.
Nếu mỗi ô vuông lớn cũng bỏ đi một ô vuông nhỏ thì mỗi ô vuông lớn còn lại 3 ô vuông là mảnh cần cắt ra. Các ô vuông nhỏ được cắt từ ô vuông lớn khi ghép lại phải là mảnh còn lại. Vì vậy mảnh còn lại có dạng ô vuông lớn cắt đi ô vuông nhỏ, nên mảnh còn lại là phần liên thông gồm 3 ô vuông ở 3 ô vuông lớn.
Bước 3: Cắt theo đường ABDEFGH ta được 1 mảnh. Cắt mảnh còn lại theo 2 đường: FI và CD ta được 3 mảnh còn lại.
Bước 4: Bốn mảnh được cắt là: MHGFIN; HGEBA; FIKCD; CDAQP đều là 1 ô vuông lớn bỏ đi một ô vuông nhỏ còn 3 ô vuông có hình dạng như nhau và bằng nhau về độ lớn.
Ví dụ 2: Chia hình vuông thành 4 hình tam giác có diện tích bằng nhau.
Bước 1: Vẽ hình vuông trên giấy kẻ ô vuông. Hình vuông được chia thành 16 ô vuông nhỏ.
Bước 2: Mảnh được cắt ra là các tam giác có diện tích bằng nhau, mỗi tam giác có diện tích 4 ô vuông. Khi đó cạnh đáy và chiều cao tương ứng của mỗi tam giác có độ dài bằng độ dài cạnh 4 và 2 ô vuông.
Bước 3: Cắt hình vuông theo hai đường chéo AC và BD tạo ra bốn tam giác OAD; ODC; OCB và OBA bằng nhau và cùng diện tích bằng 4 ô vuông nhỏ.
Bước 4: Các tam giác OAD; ODC; OCB; OBA bằng nhau: Gấp hình vuông theo hai đường chéo ta được 4 tam giác trùng khít lên nhau, do đó nó bằng nhau và bằng nhau về diện tích.
Cách khác: Mỗi mảnh được cắt ra là một tam giác có diện tích 4 ô vuông, nên tam giác đó có cạnh và độ dài đường cao tương ứng là độ dài cạnh 4 và 2 ô vuông. Nếu lấy AB làm 1 cạnh của 1 tam giác được cắt ra thì đỉnh còn lại của tam giác thuộc đường thẳng MN, các vị trí của đỉnh có thể là M, F, O. Vì vậy ta còn có các cách giải sau:
Cách 2: Cắt theo các đường BM; CM; MN.
Cách 3: Cắt theo đường AE; BE; AF.
Ví dụ 3: Cho hình chữ nhật có độ dài cạnh là 9 cm và 16 cm. Hãy cắt hình chữ nhật thành 2 mảnh để ghép lại được 1 hình vuông.
Bước 1: Vẽ hình chữ nhật trên giấy kẻ ô vuông. Số ô vuông là: 9 x 16 = 144 (ô vuông). Hình ghép được từ hai mảnh cắt ra là hình vuông cùng diện tích là 144 ô nên mỗi cạnh hình vuông độ dài là cạnh 12 ô vuông.
Bước 2: Hình vuông ghép lại từ hai mảnh có
* Một số tài liệu cũ có thể bị lỗi font khi hiển thị do dùng bộ mã không phải Unikey ...
Người chia sẻ: Phan Nữ La Giang
Dung lượng: 45,50KB|
Lượt tài: 0
Loại file: doc
Nguồn : Chưa rõ
(Tài liệu chưa được thẩm định)