Chương IV. §4. Bất phương trình bậc nhất một ẩn

Chia sẻ bởi kim nhật thành | Ngày 30/04/2019 | 43

Chia sẻ tài liệu: Chương IV. §4. Bất phương trình bậc nhất một ẩn thuộc Đại số 8

Nội dung tài liệu:


Trường THCS Trần Hưng Đạo
KÍNH CHÀO QUÝ THẦY CÔ TỚI DỰ GIỜ VỚI LỚP
Giáo viên: Nguyễn Văn Quảng
GIÁO ÁN TOÁN 8
Hiền tài là nguyên khí của quốc gia
Kiểm tra bài cũ:
1/ Viết và biểu diễn tập nghiệm trên trục số của bất phương trình sau : x ≥ 1.
2/ * Nêu hai quy tắc biến đổi phương trình ?
* Giải pt: – 3x = 4x + 2
Đáp án:
* Bất phương trình có dạng: x > a, x < a, x ≥ a, x ≤ a ( với a là số bất kì ) sẽ cho ta ngay tập nghiệm của bất phương trình.
*/ Giải phương trình: - 3x = - 4x + 2
Giải: Ta có – 3x = - 4x + 2
 - 3x + 4x = 2
 x = 2
Vậy phương trình có nghiệm là: x = 2
2/ * Hai quy tắc biến đổi phương trình là: a) Quy tắc chuyển vế: - Trong một phương trình, ta có thể chuyển một hạng tử từ vế này sang vế kia và đổi dấu hạng tử đó. b) Quy tắc nhân với một số: - Trong một phương trình ta có thể nhân ( hoặc chia ) cả hai vế với cùng một số khác 0.
Hệ thức: - 3x > - 4x + 2
Tiết 60: BẤT PHƯƠNG TRÌNH
BẬC NHẤT MỘT ẨN.
Đáp án: a) 2x – 3 < 0 và c) 5x – 15 ≥ 0 là hai bất phương trình bậc nhất một ẩn.
* Phương trình bậc nhất một ẩn có dạng:
ax + b = 0 (a  0 ); với a, b là hai số đã cho.
1/ Định nghĩa: Bất phương trình có dạng ax + b < 0 (hoặc ax + b > 0; ax + b ≤ 0; ax + b ≥ 0).
Trong đó: a, b là hai số đã cho; a  0 được gọi là bất phương trình bậc nhất một ẩn.
Lấy ví dụ:
2. Hai quy tắc biến đổi bất phương trình
a) Quy tắc chuyển vế
Nhắc lại quy tắc chuyển vế của phương trình ?
Trong một phương trình, ta có thể chuyển một hạng tử từ vế này sang vế kia và đổi dấu hạng tử đó.
Khi chuyển một hạng tử của bất phương trình từ vế này sang vế kia ta phải đổi dấu hạng tử đó.
Tương tự nêu quy tắc chuyển vế của bất phương trình ?
2/ Hai quy tắc biến đổi bất phương trình.
Giải: Ta có x – 5 < 18
 x < 18 + 5
 x < 23.
Vậy tập nghiệm của bất phương trình là: { x | x < 23 }
Giải: Ta có: 3x > 2x + 5
 3x - 2x > 5 ( Chuyển vế 2x và đổi dấu thành -2x )
 x > 5
Vậy tập nghiệm của bất phương trình là: { x | x > 5 }. Tập nghiệm này được biểu diễn như sau:
VD1: Giải bất phương trình x – 5 < 18
VD2: Giải bất phương trình: 3x > 2x + 5 và biểu diễn tập nghiệm trên trục số.
( Chuyển vế - 5 và đổi dấu thành 5 )
Bài tập vận dụng

Bài 19: ( SGK- T47)
Giải: Ta có: - 3x > - 4x + 2
 - 3x + 4x > 2 ( Chuyển vế - 4x và đổi dấu thành 4x )
 x > 2.
Vậy tập nghiệm của bất phương trình là: { x | x > 2 }.
Tập nghiệm này được biểu diễn như sau:
b) Giải bất phương trình - 3x > - 4x + 2 và biểu diễn tập nghiệm trên trục số.

Giải : Ta có 8x + 2 < 7x - 1
 8x - 7x < - 1 - 2
 x < - 3
Vậy tập nghiệm của bất phương trình là: { x | x < - 3 }
d) Giải bpt sau theo quy tắc chuyển vế : 8x + 2 < 7x - 1
Giải các bất phương trình sau:
x > 21 – 12
x > 9
- 2x + 3x > - 5
x > - 5
a) x+ 12 > 21 b) – 2x > – 3x – 5
Vậy tập nghiệm của bất phương trình là
Vậy tập nghiệm của bất phương trình là
Tập nghiệm được biểu diễn như sau:
0
9
Tập nghiệm được biểu diễn như sau:
0
-5
2
2. Hai quy tắc biến đổi bất phương trình
a) Quy tắc chuyển vế
b) Quy tắc nhân với một số:
Nêu tính chất liên hệ giữa thứ tự và phép nhân?
* Tính chất liên hệ giữa thứ tự và phép nhân
+ Khi nhân (hay chia) cả hai vế của một bất đẳng thức với cùng một số dương ta được bất đẳng thức mới cùng chiều với bất đẳng thức đã cho.
+ Khi nhân (hay chia) cả hai vế của một bất đẳng thức với cùng một số âm ta được bất đẳng thức mới ngược chiều với bất đẳng thức đã cho.
* Khi ta nhân cả hai vế của bất phương trình với cùng một số khác 0 ta phải:
+ Giữ nguyên chiều của bất phương trình nếu số đó dương
+ Đổi chiều của bất phương trình nếu số đó âm
Nếu nhân hai vế của bất phương trình với một số khác không thì sẽ như thế nào?
b) Quy tắc nhân với một số.



VD 3: Giải bất phương trình 0,5x < 3
Giải:
Ta có: - 0,5x < 3
 - 0,5x . ( - 2 ) > 3 . ( - 2 ) ( Nhân cả hai vế với - 2 và đổi chiều)
 x > - 6
Vậy tập nghiệm của bất phương trình là: { x | x > - 6 }. Tập nghiệm này được biểu diễn như sau:

Bài tập: Giải bất phương trình - 0,5x < 3 và biểu diễn tập nghiệm trên trục số.
Giải:
Ta có: 0,5x < 3
 0,5x . 2 < 3 . 2 ( Nhân cả hai vế với 2 )
 x < 6.
Vậy tập nghiệm của bất phương trình là: { x | x < 6 }
VD 4: SGK
Giải các bất phương trình sau dùng quy tắc nhân:
2x. < 24 .
x < 12
- 3x . 27.
x > - 9
a) 2x < 24 b) – 3x < 27
Vậy tập nghiệm của bất phương trình là
Vậy tập nghiệm của bất phương trình là
Tập nghiệm được biểu diễn trên trục số như sau:
Tập nghiệm được biểu diễn trên trục số như sau:
0
- 9
3
0
12
>
Giải thích sự tương đương:
a) x + 3 < 7 x -2 < 2
4
Hoạt động nhóm
b) 2x < - 4 - 3x >6
Thế nào là hai bất phương trình tương đương
Trong bài tập ?4 ta có thể dùng những cách nào để giải thích sự tương đương?
Giải thích sự tương đương :
a) x + 3 < 7  x – 2 < 2;

Giải : Ta có: x + 3 < 7
 x < 7 – 3
 x < 4.
?4
Cách khác :
Cộng (-5) vào 2 vế của bpt x + 3 < 7, ta được:
x + 3 – 5 < 7 – 5  x – 2 < 2.
và: x – 2 < 2
 x < 2 + 2
 x < 4.
Vậy hai bpt tương đương, vì có cùng một tập nghiệm.
CỦNG CỐ: BẤT PHƯƠNG TRÌNH
BẬC NHẤT MỘT ẨN.
1/ Định nghĩa: Bất phương trình có dạng ax + b < 0 ( hoặc ax + b > 0; ax + b ≤ 0; ax + b ≥ 0 ). Trong đó: a, b là hai số đã cho; a  0 được gọi là bất phương trình bậc nhất một ẩn.
2/ Hai quy tắc biến đổi bất phương trình.
a) Quy tắc chuyển vế: + Khi chuyển một hạng tử của bất phương trình từ vế này sang vế kia ta phải đổi dấu hạng tử đó.
b) Quy tắc nhân với một số : + Khi nhân hai vế của bất phương trình với cùng một số khác 0, ta phải :
- Gĩư nguyên chiều bất phương trình nếu số đó dương;
- Đổi chiều bất phương trình nếu số đó âm.
Hướng dẫn về nhà:
- Học thuộc định nghĩa và hai quy tắc vừa học.
- Hoàn thành bài tập: 19; 20; 21; SGK-Tr 47.
- Phần còn lại buổi sau chúng ta học tiếp.


* Một số tài liệu cũ có thể bị lỗi font khi hiển thị do dùng bộ mã không phải Unikey ...

Người chia sẻ: kim nhật thành
Dung lượng: | Lượt tài: 3
Loại file:
Nguồn : Chưa rõ
(Tài liệu chưa được thẩm định)