Chương IV. §1. Liên hệ giữa thứ tự và phép cộng
Chia sẻ bởi Vũ Khắc Vỹ |
Ngày 30/04/2019 |
45
Chia sẻ tài liệu: Chương IV. §1. Liên hệ giữa thứ tự và phép cộng thuộc Đại số 8
Nội dung tài liệu:
CHÀO MỪNG
CÁC EM ĐẾN VỚI TIẾT HỌC HÔM NAY
1. LIÊN HỆ GIỮA THỨ TỰ VÀ PHÉP CỘNG
2. LIÊN HỆ GIỮA THỨ TỰ VÀ PHÉP NHÂN
3. BẤT PHƯƠNG TRÌNH MỘT ẨN
4. BẤT PHƯƠNG TRÌNH BẬC NHẤT MỘT ẨN
5. PHƯƠNG TRÌNH CHỨA DẤU GIÁ TRỊ TUYỆT ĐỐI
Chương IV
BẤT PHƯƠNG TRÌNH BẬC NHẤT MỘT ẨN
TIẾT 57
LIÊN HỆ GIỮA THỨ TỰ VÀ PHÉP CỘNG
? Khi so sánh hai số thực a và b bất kì, có những trường hợp nào xảy ra?
Khi so sánh hai số thực a và b bất kì, xảy ra một trong ba trường hợp sau:
Số a bằng số b (kí hiệu a = b)
Số a nhỏ hơn số b (kí hiệu a < b)
Số a lớn hơn số b (kí hiệu a > b)
? Khi biểu diễn hai số thực trên trục số (vẽ theo phương nằm ngang) thì vị trí các điểm biểu diễn hai số đó có quan hệ như thế nào với nhau ?
0
-1,3
-2
3
Khi biểu diễn số thực trên trục số (vẽ theo phương nằm ngang) thì điểm biểu diễn số nhỏ hơn ở bên trái điểm biểu diễn số lớn hơn .
? Hãy nối mỗi ý 1, 2 với một trong các ý A, B, C, D để được các khẳng định đúng
1) Số a không nhỏ hơn số b
2) Số a không lớn hơn số b
A) thì phải có hoặc a < b, hoặc a = b
B) thì phải có a > b
C) thì phải có hoặc a > b, hoặc a = b
D) thì phải có a < b
1) Số a không nhỏ hơn số b
2) Số a không lớn hơn số b
A) thì phải có hoặc a < b, hoặc a = b
B) thì phải có a > b
C) thì phải có hoặc a > b, hoặc a = b
D) thì phải có a < b
Nếu số a không nhỏ hơn số b thì phải có hoặc a > b, hoặc a = b.
Khi đó ta nói gọn là a lớn hơn hoặc bằng b, kí hiệu là a ≥ b
Nếu số a không lớn hơn số b thì phải có hoặc a < b, hoặc a = b.
Khi đó ta nói gọn là a nhỏ hơn hoặc bằng b, kí hiệu là a ≤ b
? Điền dấu thích hợp (= , > , ≥ , < , ≤ ) vào ô trống:
a) Với mọi x R thì x2 0
b) Nếu c là số không âm thì ta viết c 0
d) Nếu y là số không lớn hơn 3 thì ta viết y 3
c) Với mọi x R thì -x2 0
≤
≥
≥
≤
Hệ thức dạng a < b (hay a > b, a ≥ b, a ≤ b) gọi là bất đẳng thức.
a gọi là vế trái, b gọi là vế phải của bất đẳng thức.
- Bất đẳng thức trên có vế trái là 7 + (-3) và vế phải là - 5
Ví dụ 1. Cho bất đẳng thức: 7 + (-3) > -5 .
Hãy xác định vế trái và vế phải của bất đẳng thức trên ?
Bài toán: Cho bất đẳng thức -4 < 2. Khi cộng 3 vào cả hai vế của bất đẳng thức trên thì ta được bất đẳng thức nào ?
Nhận xét:
Khi cộng 3 vào cả hai vế của bất đẳng thức - 4 < 2, ta được bất đẳng thức - 4 + 3 < 2 + 3
-4
-3
-2
-1
0
1
2
3
4
5
-4
-3
-2
-1
0
1
2
3
4
5
cộng với 3
cộng với 3
- 4 < 2
- 4 + 3 < 2 + 3
b) Dự đoán: Khi cộng số c vào cả hai vế của bất đẳng thức - 4 < 2 thì được bất đẳng thức - 4 + c < 2 + c
?2 a) Khi cộng - 3 vào cả hai vế của bất đẳng thức - 4 < 2 thì được BĐT nào ?
b) Dự đoán: Khi cộng số c vào cả hai vế của BĐT - 4 < 2 thì được BĐT nào?
Giải:
a) Khi cộng -3 vào cả hai vế của bất đẳng thức - 4 < 2 thì được bất đẳng thức - 4 + (- 3) < 2 + (- 3)
- 4 < 2
-4 + (-3)
2 + (-3)
- 4 + (-3) < 2 + (-3)
Tính chất: (SGK – Tr36)
Với ba số a, b, c ta có :
Nếu a < b thì a + c < b + c
Nếu a ≤ b thì
Nếu a > b thì
Nếu a ≥ b thì
:...........................
:..........................
:..........................
a + c ≤ b + c
a + c > b + c
a + c ≥ b + c
Khi cộng cùng một số vào cả hai vế của một bất đẳng thức ta được bất đẳng thức mới cùng chiều với bất đẳng thức đã cho.
Ví dụ 2 : Chứng tỏ 2003 + (-35) < 2004 + (-35)
Giải :
Ta có : 2003 < 2004
Cộng -35 vào cả hai vế của bất đẳng thức trên ta được:
2003 + (-35) < 2004 + (-35)
?3 So sánh -2004 + (-777) và -2005 + (-777) mà không tính giá trị mỗi biểu thức
?4 Dựa vào thứ tự giữa và 3 . Hãy so sánh và 5.
Giải:
?3 Ta có -2004 > (-2005)
Cộng (-777) vào cả hai vế của bất đẳng thức trên ta được:
-2004 + (-777) > (-2005) + (-777)
?4 Ta có < 3 (vì < = 3)
Cộng 2 vào cả hai vế của bất đẳng thức trên ta được:
Chú ý :
Tính chất của thứ tự cũng chính là tính chất của bất đẳng thức.
?3 - So sánh - 2004 + (-777) và - 2005 + (-777) mà không tính giá trị mỗi biểu thức
? 4 - Dựa vào thứ tự giữa và 3 . Hãy so sánh và 5.
< 3 + 2 hay < 5
A
C
D
B
Bài 1: Mỗi khẳng định sau đúng hay sai? Vì sao?
ĐÚNG
ĐÚNG
ĐÚNG
ĐÚNG
SAI
SAI
SAI
SAI
CHUYỂN TRANG
Sai. Vì 1 < 2
Đúng. Vì - 6 = - 6
Đúng. Vì 4 < 15, cộng cả hai vế với (-8), ta được 4 + (-8) < 15 + (-8)
Đúng. Vì x2 0, cộng hai vế
với 1, ta được x2 + 1 ≥ 1
BỨC TRANH BÍ MẬT
A. 2 tru?ng h?p
B. 3 tru?ng h?p
C. 4 tru?ng h?p
D. 5 tru?ng h?p
B. 3 tru?ng h?p
Khi so sánh hai số a và b thì xảy ra mấy trường hợp?
Câu hỏi 1
Cho a > b. Hóy so sỏnh a + 4 v b + 4 ?
a + 4 = b + 4
a + 4 < b + 4
a + 4 > b + 4
a + 4 > b + 4
Câu hỏi 2
A
C
B
C
3 - 5 l ................................................ c?a b?t d?ng th?c 3 - 5 < 0.
vế trái
Điền từ còn thiếu vào câu sau:
Câu hỏi 3
Câu hỏi 3
Bi 4 ( SGK Tr37 )
D?. M?t bi?n bo giao thơng v?i n?n tr?ng, s? 20 mu den, vi?n d? (xem hình bn) cho bi?t v?n t?c t?i da m cc phuong ti?n giao thơng du?c di trn qung du?ng cĩ bi?n quy d?nh l 20km/h. N?u m?t ơ tơ di trn du?ng dĩ cĩ v?n t?c l a(km/h) thì a ph?i tho? mn di?u ki?n no trong cc di?u ki?n sau:
a > 20
a ≥ 20
Câu hỏi 4
a ≤ 20
a < 20
20
Câu hỏi 5
Điền từ còn thiếu vào chỗ trống trong câu sau:
Khi cộng cùng một số vào hai vế của bất đẳng thức ta được một bất đẳng thức mới .......................................................................................... với bất đẳng thức đã cho.
cùng chiều
Câu hỏi 6
Trong các trường hợp sau, đâu là đẳng thức?
3 < 5
4 – 3 > 0
6 + 5 = 11
c. 6 + 5 = 11
Cô-si (Cauchy) (1789 – 1857) là nhà Toán học Pháp nghiên cứu nhiều lĩnh vực Toán học khác nhau. Ông có nhiều công trình về Số học, Đại số, Giải tích, … Có một bất đẳng thức mang tên ông có rất nhiều ứng dụng trong việc chứng minh các bất đẳng thức và giải các bài toán tìm giá trị lớn nhất và nhỏ nhất của các biểu thức.
Bất đẳng thức Cô-si cho 2 số là: với a ≥ 0, b ≥ 0
Bất đẳng thức này còn được gọi là bất đẳng thức giữa trung bình cộng và trung bình nhân.
HƯỚNG DẪN HỌC Ở NHÀ VÀ CHUẨN BỊ BÀI SAU
Học ở nhà
- Học bài theo SGK và vở ghi.
- Làm bài tập về nhà: 2, 3 - SGK Tr37.
2, 4, 7 - SBT Tr41- 42
Chuẩn bị bài sau
- Đọc trước § 2. Liên hệ giữa thứ tự và phép nhân – SGK Tr38
- Cho (-2) < 3. Tính và nhận xét các kết quả sau:
(-2). 3 ? 3.3 (-2). 8 ? 3. 8
(-2). (-3) ? 3. (-3) (-2). (-8) ? 3. (-8)
1
Điền các dấu thích hợp (=, <, >) vào ô vuông:
a) 1,53 1,8
c)
b) -2,3 -2,41
d)
<
>
=
<
CÁC EM ĐẾN VỚI TIẾT HỌC HÔM NAY
1. LIÊN HỆ GIỮA THỨ TỰ VÀ PHÉP CỘNG
2. LIÊN HỆ GIỮA THỨ TỰ VÀ PHÉP NHÂN
3. BẤT PHƯƠNG TRÌNH MỘT ẨN
4. BẤT PHƯƠNG TRÌNH BẬC NHẤT MỘT ẨN
5. PHƯƠNG TRÌNH CHỨA DẤU GIÁ TRỊ TUYỆT ĐỐI
Chương IV
BẤT PHƯƠNG TRÌNH BẬC NHẤT MỘT ẨN
TIẾT 57
LIÊN HỆ GIỮA THỨ TỰ VÀ PHÉP CỘNG
? Khi so sánh hai số thực a và b bất kì, có những trường hợp nào xảy ra?
Khi so sánh hai số thực a và b bất kì, xảy ra một trong ba trường hợp sau:
Số a bằng số b (kí hiệu a = b)
Số a nhỏ hơn số b (kí hiệu a < b)
Số a lớn hơn số b (kí hiệu a > b)
? Khi biểu diễn hai số thực trên trục số (vẽ theo phương nằm ngang) thì vị trí các điểm biểu diễn hai số đó có quan hệ như thế nào với nhau ?
0
-1,3
-2
3
Khi biểu diễn số thực trên trục số (vẽ theo phương nằm ngang) thì điểm biểu diễn số nhỏ hơn ở bên trái điểm biểu diễn số lớn hơn .
? Hãy nối mỗi ý 1, 2 với một trong các ý A, B, C, D để được các khẳng định đúng
1) Số a không nhỏ hơn số b
2) Số a không lớn hơn số b
A) thì phải có hoặc a < b, hoặc a = b
B) thì phải có a > b
C) thì phải có hoặc a > b, hoặc a = b
D) thì phải có a < b
1) Số a không nhỏ hơn số b
2) Số a không lớn hơn số b
A) thì phải có hoặc a < b, hoặc a = b
B) thì phải có a > b
C) thì phải có hoặc a > b, hoặc a = b
D) thì phải có a < b
Nếu số a không nhỏ hơn số b thì phải có hoặc a > b, hoặc a = b.
Khi đó ta nói gọn là a lớn hơn hoặc bằng b, kí hiệu là a ≥ b
Nếu số a không lớn hơn số b thì phải có hoặc a < b, hoặc a = b.
Khi đó ta nói gọn là a nhỏ hơn hoặc bằng b, kí hiệu là a ≤ b
? Điền dấu thích hợp (= , > , ≥ , < , ≤ ) vào ô trống:
a) Với mọi x R thì x2 0
b) Nếu c là số không âm thì ta viết c 0
d) Nếu y là số không lớn hơn 3 thì ta viết y 3
c) Với mọi x R thì -x2 0
≤
≥
≥
≤
Hệ thức dạng a < b (hay a > b, a ≥ b, a ≤ b) gọi là bất đẳng thức.
a gọi là vế trái, b gọi là vế phải của bất đẳng thức.
- Bất đẳng thức trên có vế trái là 7 + (-3) và vế phải là - 5
Ví dụ 1. Cho bất đẳng thức: 7 + (-3) > -5 .
Hãy xác định vế trái và vế phải của bất đẳng thức trên ?
Bài toán: Cho bất đẳng thức -4 < 2. Khi cộng 3 vào cả hai vế của bất đẳng thức trên thì ta được bất đẳng thức nào ?
Nhận xét:
Khi cộng 3 vào cả hai vế của bất đẳng thức - 4 < 2, ta được bất đẳng thức - 4 + 3 < 2 + 3
-4
-3
-2
-1
0
1
2
3
4
5
-4
-3
-2
-1
0
1
2
3
4
5
cộng với 3
cộng với 3
- 4 < 2
- 4 + 3 < 2 + 3
b) Dự đoán: Khi cộng số c vào cả hai vế của bất đẳng thức - 4 < 2 thì được bất đẳng thức - 4 + c < 2 + c
?2 a) Khi cộng - 3 vào cả hai vế của bất đẳng thức - 4 < 2 thì được BĐT nào ?
b) Dự đoán: Khi cộng số c vào cả hai vế của BĐT - 4 < 2 thì được BĐT nào?
Giải:
a) Khi cộng -3 vào cả hai vế của bất đẳng thức - 4 < 2 thì được bất đẳng thức - 4 + (- 3) < 2 + (- 3)
- 4 < 2
-4 + (-3)
2 + (-3)
- 4 + (-3) < 2 + (-3)
Tính chất: (SGK – Tr36)
Với ba số a, b, c ta có :
Nếu a < b thì a + c < b + c
Nếu a ≤ b thì
Nếu a > b thì
Nếu a ≥ b thì
:...........................
:..........................
:..........................
a + c ≤ b + c
a + c > b + c
a + c ≥ b + c
Khi cộng cùng một số vào cả hai vế của một bất đẳng thức ta được bất đẳng thức mới cùng chiều với bất đẳng thức đã cho.
Ví dụ 2 : Chứng tỏ 2003 + (-35) < 2004 + (-35)
Giải :
Ta có : 2003 < 2004
Cộng -35 vào cả hai vế của bất đẳng thức trên ta được:
2003 + (-35) < 2004 + (-35)
?3 So sánh -2004 + (-777) và -2005 + (-777) mà không tính giá trị mỗi biểu thức
?4 Dựa vào thứ tự giữa và 3 . Hãy so sánh và 5.
Giải:
?3 Ta có -2004 > (-2005)
Cộng (-777) vào cả hai vế của bất đẳng thức trên ta được:
-2004 + (-777) > (-2005) + (-777)
?4 Ta có < 3 (vì < = 3)
Cộng 2 vào cả hai vế của bất đẳng thức trên ta được:
Chú ý :
Tính chất của thứ tự cũng chính là tính chất của bất đẳng thức.
?3 - So sánh - 2004 + (-777) và - 2005 + (-777) mà không tính giá trị mỗi biểu thức
? 4 - Dựa vào thứ tự giữa và 3 . Hãy so sánh và 5.
< 3 + 2 hay < 5
A
C
D
B
Bài 1: Mỗi khẳng định sau đúng hay sai? Vì sao?
ĐÚNG
ĐÚNG
ĐÚNG
ĐÚNG
SAI
SAI
SAI
SAI
CHUYỂN TRANG
Sai. Vì 1 < 2
Đúng. Vì - 6 = - 6
Đúng. Vì 4 < 15, cộng cả hai vế với (-8), ta được 4 + (-8) < 15 + (-8)
Đúng. Vì x2 0, cộng hai vế
với 1, ta được x2 + 1 ≥ 1
BỨC TRANH BÍ MẬT
A. 2 tru?ng h?p
B. 3 tru?ng h?p
C. 4 tru?ng h?p
D. 5 tru?ng h?p
B. 3 tru?ng h?p
Khi so sánh hai số a và b thì xảy ra mấy trường hợp?
Câu hỏi 1
Cho a > b. Hóy so sỏnh a + 4 v b + 4 ?
a + 4 = b + 4
a + 4 < b + 4
a + 4 > b + 4
a + 4 > b + 4
Câu hỏi 2
A
C
B
C
3 - 5 l ................................................ c?a b?t d?ng th?c 3 - 5 < 0.
vế trái
Điền từ còn thiếu vào câu sau:
Câu hỏi 3
Câu hỏi 3
Bi 4 ( SGK Tr37 )
D?. M?t bi?n bo giao thơng v?i n?n tr?ng, s? 20 mu den, vi?n d? (xem hình bn) cho bi?t v?n t?c t?i da m cc phuong ti?n giao thơng du?c di trn qung du?ng cĩ bi?n quy d?nh l 20km/h. N?u m?t ơ tơ di trn du?ng dĩ cĩ v?n t?c l a(km/h) thì a ph?i tho? mn di?u ki?n no trong cc di?u ki?n sau:
a > 20
a ≥ 20
Câu hỏi 4
a ≤ 20
a < 20
20
Câu hỏi 5
Điền từ còn thiếu vào chỗ trống trong câu sau:
Khi cộng cùng một số vào hai vế của bất đẳng thức ta được một bất đẳng thức mới .......................................................................................... với bất đẳng thức đã cho.
cùng chiều
Câu hỏi 6
Trong các trường hợp sau, đâu là đẳng thức?
3 < 5
4 – 3 > 0
6 + 5 = 11
c. 6 + 5 = 11
Cô-si (Cauchy) (1789 – 1857) là nhà Toán học Pháp nghiên cứu nhiều lĩnh vực Toán học khác nhau. Ông có nhiều công trình về Số học, Đại số, Giải tích, … Có một bất đẳng thức mang tên ông có rất nhiều ứng dụng trong việc chứng minh các bất đẳng thức và giải các bài toán tìm giá trị lớn nhất và nhỏ nhất của các biểu thức.
Bất đẳng thức Cô-si cho 2 số là: với a ≥ 0, b ≥ 0
Bất đẳng thức này còn được gọi là bất đẳng thức giữa trung bình cộng và trung bình nhân.
HƯỚNG DẪN HỌC Ở NHÀ VÀ CHUẨN BỊ BÀI SAU
Học ở nhà
- Học bài theo SGK và vở ghi.
- Làm bài tập về nhà: 2, 3 - SGK Tr37.
2, 4, 7 - SBT Tr41- 42
Chuẩn bị bài sau
- Đọc trước § 2. Liên hệ giữa thứ tự và phép nhân – SGK Tr38
- Cho (-2) < 3. Tính và nhận xét các kết quả sau:
(-2). 3 ? 3.3 (-2). 8 ? 3. 8
(-2). (-3) ? 3. (-3) (-2). (-8) ? 3. (-8)
1
Điền các dấu thích hợp (=, <, >) vào ô vuông:
a) 1,53 1,8
c)
b) -2,3 -2,41
d)
<
>
=
<
* Một số tài liệu cũ có thể bị lỗi font khi hiển thị do dùng bộ mã không phải Unikey ...
Người chia sẻ: Vũ Khắc Vỹ
Dung lượng: |
Lượt tài: 3
Loại file:
Nguồn : Chưa rõ
(Tài liệu chưa được thẩm định)