Chương III. §4. Phương trình tích
Chia sẻ bởi Trần Thị Ngọc |
Ngày 30/04/2019 |
40
Chia sẻ tài liệu: Chương III. §4. Phương trình tích thuộc Đại số 8
Nội dung tài liệu:
TRƯỜNG THCS HỒNG PHONG – VŨ THƯ – THÁI BÌNH
MÔN TOÁN 8
Tiết 47: Phương trình tích
GIÁO VIÊN : Trần Thị Ngọc
NHIỆT LIỆT CHÀO MỪNG CÁC THẦY CÔ GIÁO VÀ CÁC EM HỌC SINH !
1. Phân tích mỗi đa thức sau thành nhân tử:
Kiểm tra bài cũ
b) Q(x) = (x - 1)(x2 + 3x - 2) - (x3 - 1)
a) P(x) = (x2 - 1) + (x + 1)(x - 2)
2. Nêu các phương pháp phân tích đa thức thành nhân tử đã học ?
Trả lời:
Các phương pháp phân tích đa thức thành nhân tử đã học:
- Đặt nhân tử chung
- Dùng hằng đẳng thức
- Nhóm hạng tử
- Tách một hạng tử thành nhiều hạng tử
- Thêm và bớt cùng một hạng tử
Phân tích các đa thức sau thành nhân tử:
P(x) = (x2 - 1)+ (x + 1)(x - 2)
Q(x) = (x - 1)(x2 + 3x - 2) – (x3 -1)
Bài giải
a) P(x) = (x2 – 1) + (x + 1)(x – 2)
= (x + 1)(x – 1) + (x + 1)(x – 2)
= (x + 1)(x – 1+ x – 2)
= (x + 1)(2x – 3)
b) Q(x) = (x – 1)(x2 + 3x – 2) – (x3 – 1)
= (x – 1)(x2 + 3x – 2) – (x –1)(x2 + x + 1)
= (x –1)(x2 + 3x – 2 – x2 – x – 1)
= (x –1)(2x – 3)
Kiểm tra bài cũ
1. Phương trình tích và cách giải
Hãy nhớ lại một tính chất của phép nhân các số, phát biểu tiếp các khẳng định sau :
- Trong một tích, nếu có một thừa số bằng 0 thì
…
- Ngược lại, nếu tích bằng 0 thì ít nhất một trong các thừa số của tích
tích bằng 0
phải bằng 0
…
a.b = 0
(a và b là 2 số)
Ví dụ1. Giải phương trình: (2x – 3)(x + 1) = 0
2x – 3 = 0 hoặc x + 1 = 0
2x = 3
x = 1,5
1) 2x – 3 = 0
2) x + 1 = 0
x = - 1
Giải:
(2x – 3)(x + 1) = 0
Phương trình đã cho có hai nghiệm là x = 1,5 và x = - 1.
?2
Tập nghiệm của phương trình đã cho là S = {1,5; -1 }
a = 0 hoặc b = 0
. Phương trình (1) được gọi là phương trình tích.
Trong bài này, chúng ta chỉ xét các phương trình mà hai vế của nó là hai biểu thức hữu tỉ của ẩn và không chứa ẩn ở mẫu.
(2x – 3)(x + 1) = 0 (1)
1. Phương trình tích và cách giải
Ví dụ1. Giải phương trình: (2x – 3)(x + 1) = 0 (1)
2x – 3 = 0 hoặc x + 1 = 0
2x = 3
x = 1,5
1) 2x – 3 = 0
2) x + 1 = 0
x = - 1
Giải:
(2x – 3)(x + 1) = 0
Tập nghiệm của phương trình đã cho là S = {1,5; -1 }
A(x)
B(x)
. = 0
*Xét phương trình tích có dạng: A(x)B(x) = 0 (trong đó A(x), B(x) là những biểu thức hữu tỉ của ẩn và không chứa ẩn ở mẫu).
. Phương trình (1) được gọi là phương trình tích.
Bước 2: Giải A(x) = 0 và B(x) = 0
Bước 3: Kết luận nghiệm
Cách giải
(lấy tất cả các nghiệm của chúng).
(2x – 3)(x + 1) = 0 (1)
Em hãy lấy ví dụ về phương trình tích?
1. Phương trình tích và cách giải
Ví dụ1. Giải phương trình: (2x – 3)(x + 1) = 0 (1)
2x – 3 = 0 hoặc x + 1 = 0
2x = 3
x = 1,5
1) 2x – 3 = 0
2) x + 1 = 0
x = - 1
Giải:
(2x – 3)(x + 1) = 0
Tập nghiệm của phương trình đã cho là S = {1,5; -1 }
*Xét phương trình tích có dạng: A(x)B(x) = 0 (trong đó A(x), B(x) là những biểu thức hữu tỉ của ẩn và không chứa ẩn ở mẫu).
Bước 2: Giải A(x) = 0 và B(x) = 0
Bước 3: Kết luận nghiệm
Cách giải
(lấy tất cả các nghiệm của chúng).
(2x – 3)(x + 1) = 0 (1)
Bài 1. Hãy chỉ ra phương trình tích trong các phương trình sau:
b)
a)
c)
Bài 2.Giải phương trình:
Bài tập:
d)
e)
1. Phương trình tích và cách giải
Ví dụ1. Giải phương trình: (2x - 3)(x + 1) = 0
2x – 3 = 0 hoặc x + 1 = 0
2x = 3
x = 1,5
1) 2x – 3 = 0
2) x + 1 = 0
x = - 1
Giải:
( 2x – 3 )( x + 1) = 0
Giải phương trình
(x + 1)(x + 4) = (2 – x)(2 + x)
Giải:
2. Áp dụng
(x + 1)(x + 4) = (2 – x)(2 + x)
(x + 1)(x + 4) – (2 – x)(2 + x) = 0
( x2 + x + 4x + 4) – (22 – x2) = 0
2x2 + 5x = 0
x(2x + 5) = 0
1) x = 0 ;
2) 2x + 5 = 0
2x = - 5
x = - 2,5
Vậy tập nghiệm của phương trình đã cho là S = { 0 ; - 2,5 }
x = 0 hoặc 2x + 5 = 0
Tập nghiệm của phương trình đã cho là S = {1,5; -1 }
*Xét phương trình tích có dạng:
Bước 2: Giải A(x) = 0 và B(x) = 0
Bước 3: Kết luận nghiệm
(lấy tất cả các nghiệm của chúng).
Cách giải
x2 + x + 4x + 4 – 4 + x2 = 0
Ví dụ 2.
A(x)B(x) = 0
1. Phương trình tích và cách giải
A(x)B(x) = 0 A(x) = 0 hoặc B(x) = 0
Ví dụ 2. Giải phương trình (x + 1)(x + 4) = (2 – x)(2 + x)
Giải:
2. Áp dụng
(x + 1)(x + 4) = (2 – x)(2 + x)
(x + 1)(x + 4) – (2 – x)(2 + x) = 0
x2 + x + 4x + 4 – 4 + x2 = 0
2x2 + 5x = 0
x(2x + 5) = 0
1) x = 0 ;
2) 2x + 5 = 0
2x = - 5
x = - 2,5
Vậy tập nghiệm của phương trình đã cho là S = { 0 ; - 2,5 }
Bước 1. Đưa phương trình đã cho về dạng phương trình tích.
Bước 2. Giải phương trình tích rồi kết luận.
x = 0 hoặc 2x + 5 = 0
Bước 1. Đưa phương trình đã cho về dạng phương trình tích.
Bước 2. Giải phương trình tích rồi kết luận.
Nhận xét:
x2 + x + 4x + 4 – ( 4 – x2)= 0
1. Phương trình tích và cách giải
A(x)B(x) = 0 A(x) = 0 hoặc B(x) = 0
Ví dụ 2. Giải phương trình
Giải:
2. Áp dụng
(x + 1)(x + 4) = (2 – x)(2 + x)
(x + 1)(x + 4) – (2 – x)(2 + x) = 0
x2 + x + 4x + 4 – 22 + x2 = 0
2x2 + 5x = 0
x(2x + 5) = 0
1) x = 0 ;
2) 2x + 5 = 0
2x = - 5
x = - 2,5
Vậy tập nghiệm của phương trình đã cho là S = { 0 ; - 2,5 }
(x - 1)(x2 + 3x - 2) - (x3 - 1) = 0
Giải phương trình
?3
(x + 1)(x + 4) = (2 – x)( 2 + x)
x = 0 hoặc 2x + 5 = 0
B1. Đưa PT đã cho về dạng PT tích.
B2. Giải PT tích rồi kết luận.
Nhận xét:
Giải:
(x - 1)(x2 + 3x - 2) - (x3 - 1) = 0
(x - 1)[(x2 + 3x - 2) - (x2 + x +1)] = 0
(x – 1)(x2 + 3x – 2 – x2 – x – 1) = 0
(x - 1)(2x - 3) = 0
x - 1 = 0 hoặc 2x - 3 = 0
x - 1 = 0 x = 1
2x - 3 = 0 2x = 3 x = 1,5
Vậy tập nghiệm của phương trình đã cho là S = { 1 ; 1,5 }
1. Phương trình tích và cách giải
A(x)B(x) = 0 A(x) = 0 hoặc B(x) = 0
2. Áp dụng
Cách 2
(x - 1)(x2 + 3x - 2) - (x3 - 1) = 0
x3 + 3x2 - 2x - x2 - 3x + 2 - x3+1 = 0
2x2 - 5x + 3 = 0
2x2 - 2x - 3x + 3 = 0
(2x2 - 2x) - (3x - 3) = 0
2x(x - 1) - 3(x - 1) = 0
(x - 1)(2x - 3) = 0
x - 1 = 0 hoặc 2x - 3 = 0
x - 1 = 0 x = 1
2x - 3 = 0 2x = 3 x = 1,5
Vậy tập nghiệm của phương trình đã cho là S = { 1 ; 1,5 }
(x - 1)(x2 + 3x - 2) - (x3 - 1) = 0
Giải phương trình
?3
Giải:
(x - 1)(x2 + 3x - 2) - (x3 - 1) = 0
(x - 1)[(x2 + 3x - 2) - (x2 + x +1)] = 0
(x – 1)(x2 + 3x – 2 – x2 – x – 1) = 0
(x - 1)(2x - 3) = 0
x - 1 = 0 hoặc 2x - 3 = 0
x - 1 = 0 x = 1
2x - 3 = 0 2x = 3 x = 1,5
Vậy tập nghiệm của phương trình đã cho là S = { 1 ; 1,5 }
Cách 1
1. Phương trình tích và cách giải
x = 1
x + 1 = 0 hoặc x - 1 = 0 hoặc 2x - 1 = 0
Vậy tập nghiệm của phương trình (3) là: S = {-1; 1 ; 0,5}
2x3 = x2 + 2x – 1
Ví dụ 3: Giải phương trình
Giải:
2) x - 1 = 0
3) 2x - 1 = 0
x = 0,5
2x3 = x2 + 2x - 1
2x3 - x2 - 2x + 1 = 0
(2x3 - 2x) - (x2 - 1) = 0
2x(x2 - 1) - (x2 - 1) = 0
(x2 - 1) (2x - 1) = 0
(x + 1)(x - 1)(2x - 1) = 0
x = - 1
1) x + 1 = 0
A(x)B(x) = 0 A(x) = 0 hoặc B(x) = 0
Ví dụ 2. Giải phương trình
2. Áp dụng
(x + 1)(x + 4) = (2 – x)( 2 + x)
Bước 1. Đưa phương trình đã cho về dạng phương trình tích.
Bước 2. Giải phương trình tích rồi kết luận.
Nhận xét:
Bước 1. Đưa phương trình đã cho về dạng phương trình tích.
Bước 2. Giải phương trình tích rồi kết luận.
Nhận dạng phương trình tích.
Cách giải phương trình tích A(x)B(x)=0
Cách giải phương trình đưa được về phương trình tích
Bước 2: Giải A(x) = 0 và B(x) = 0
Bước 3: Kết luận nghiệm
(lấy tất cả các nghiệm của chúng).
Bước 1:
Giải phương trình tích rồi kết luận.
Đưa phương trình đã cho về dạng phương trình tích.
Bước 2:
1.Phương trình tích và cách giải
A(x)B(x) = 0 A(x) = 0 hoặc B(x) = 0
Ví dụ 2. Giải phương trình
2. Áp dụng
(x + 1)(x + 4) = (2 – x)( 2 + x)
B1. Đưa PT đã cho về dạng PT tích.
B2. Giải PT tích rồi kết luận.
Nhận xét:
2x3 = x2 + 2x – 1
Ví dụ 3: Giải phương trình
.Trong trường hợp vế trái là tích của nhiều hơn hai nhân tử, ta cũng giải tương tự.
Bài 3. Giải phương trình:
x2 (x – 86) = (x – 86)(5x – 6)
x - 2 = 0 hoặc x - 3 = 0
1) x – 2 = 0 x = 2
Vậy tập nghiệm của phương trình đã cho là : S = { 3 ; 2}
2) x – 3 = 0 x = 3
x2 (x – 86) = (x – 86)(5x – 6)
x2 = 5x – 6
x2 – 5x + 6 = 0
(x – 2)(x– 3) = 0
Bạn Hoa giải phương trình trên như sau:
Theo em bạn Hoa giải đúng hay sai, tại sao?
Bạn Hoa giải sai, vì đã chia cả 2 vế của phương trình cho x – 86.
1.Phương trình tích và cách giải
A(x)B(x) = 0 A(x) = 0 hoặc B(x) = 0
Ví dụ 2. Giải phương trình
2. Áp dụng
(x + 1)(x + 4) = (2 – x)( 2 + x)
B1. Đưa PT đã cho về dạng PT tích.
B2. Giải PT tích rồi kết luận.
Nhận xét:
2x3 = x2 + 2x – 1
Ví dụ 3: Giải phương trình
.Trong trường hợp vế trái là tích của nhiều hơn hai nhân tử, ta cũng giải tương tự.
Bài 3. Giải phương trình:
x2 (x – 86) = (x – 86)(5x – 6)
x - 86 = 0 hoặc x - 2 = 0
hoặc x - 3 = 0
1) x - 86 = 0 x = 86
2) x – 2 = 0 x = 2
Vậy tập nghiệm của phương trình đã cho là : S = { }
3) x – 3 = 0 x = 3
x2 (x – 86) – (x – 86)(5x – 6) = 0
(x – 86)[x2 – (5x – 6)] = 0
(x – 86)(x2 – 5x + 6) = 0
(x – 86)(x – 2)(x– 3) = 0
3 ; 2 ; 86
3 ; 2 ; 86
1.Phương trình tích và cách giải
A(x)B(x) = 0 A(x) = 0 hoặc B(x) = 0
2. Áp dụng
Vậy tập nghiệm của phương trình đã cho là : S = { 0 ; - 1 }
Giải phương trình :
(x3 + x2) + (x2 + x) = 0
x2 (x + 1) + x(x + 1) = 0
x(x + 1)2 = 0
x(x + 1) (x + 1) = 0
x = 0 hoặc x + 1 = 0
1) x = 0
2) x +1 = 0 x = - 1
?4
Bài 22(SGK/17). Giải phương trình:
f ) x2 – x – (3x – 3) = 0
(x – 1)(x – 3) = 0
x – 1 = 0 hoặc x – 3 = 0
1) x – 1 = 0 x = 1
x(x – 1) – 3(x – 1) = 0
(x2 – x ) – (3x – 3) = 0
2) x – 3 = 0 x = 3
Vậy tập nghiệm của phương trình đã cho là : S = { 1 ; 3 }
(5,0 điểm)
(1,5 điểm)
(1,5 điểm)
(2,0 điểm)
(5,0 điểm)
(1,5 điểm)
(1,5 điểm)
(2,0 điểm)
HOẠT ĐỘNG NHÓM THEO BÀN
Dãy 1: ?4 - Dãy 2: ý f)
1. Phương trình tích và cách giải
2x3 = x2 + 2x – 1
Ví dụ 3: Giải phương trình
A(x)B(x) = 0 A(x) = 0 hoặc B(x) = 0
Ví dụ 2. Giải phương trình
2. Áp dụng
(x + 1)(x + 4) = (2 – x)( 2 + x)
Bước 1. Đưa phương trình đã cho về dạng phương trình tích.
Bước 2. Giải phương trình tích rồi kết luận.
Nhận xét:
(3)
Bài 4 : Cho phương trình (ẩn x)
Giải phương trình khi k = 1
b) Tìm các giá trị của k sao cho phương trình nhận x = - 2 ….là nghiệm.
a)
HƯỚNG DẪN VỀ NHÀ:
- Học kỹ bài, nhận dạng được phương trình tích
nắm được cách giải phương trình tích.
- Làm bài tập 21; 22 (các ý còn lại); 23 SGK /17. Học sinh giỏi và khá làm thêm bài 30; 32 SBT/10
- Giờ sau : Luyện tập.
Kính chúc các thầy cô giáo
Xin trân trọng cảm ơn !
mạnh khỏe – hạnh phúc !
Chúc các em chăm ngoan - học giỏi !
MÔN TOÁN 8
Tiết 47: Phương trình tích
GIÁO VIÊN : Trần Thị Ngọc
NHIỆT LIỆT CHÀO MỪNG CÁC THẦY CÔ GIÁO VÀ CÁC EM HỌC SINH !
1. Phân tích mỗi đa thức sau thành nhân tử:
Kiểm tra bài cũ
b) Q(x) = (x - 1)(x2 + 3x - 2) - (x3 - 1)
a) P(x) = (x2 - 1) + (x + 1)(x - 2)
2. Nêu các phương pháp phân tích đa thức thành nhân tử đã học ?
Trả lời:
Các phương pháp phân tích đa thức thành nhân tử đã học:
- Đặt nhân tử chung
- Dùng hằng đẳng thức
- Nhóm hạng tử
- Tách một hạng tử thành nhiều hạng tử
- Thêm và bớt cùng một hạng tử
Phân tích các đa thức sau thành nhân tử:
P(x) = (x2 - 1)+ (x + 1)(x - 2)
Q(x) = (x - 1)(x2 + 3x - 2) – (x3 -1)
Bài giải
a) P(x) = (x2 – 1) + (x + 1)(x – 2)
= (x + 1)(x – 1) + (x + 1)(x – 2)
= (x + 1)(x – 1+ x – 2)
= (x + 1)(2x – 3)
b) Q(x) = (x – 1)(x2 + 3x – 2) – (x3 – 1)
= (x – 1)(x2 + 3x – 2) – (x –1)(x2 + x + 1)
= (x –1)(x2 + 3x – 2 – x2 – x – 1)
= (x –1)(2x – 3)
Kiểm tra bài cũ
1. Phương trình tích và cách giải
Hãy nhớ lại một tính chất của phép nhân các số, phát biểu tiếp các khẳng định sau :
- Trong một tích, nếu có một thừa số bằng 0 thì
…
- Ngược lại, nếu tích bằng 0 thì ít nhất một trong các thừa số của tích
tích bằng 0
phải bằng 0
…
a.b = 0
(a và b là 2 số)
Ví dụ1. Giải phương trình: (2x – 3)(x + 1) = 0
2x – 3 = 0 hoặc x + 1 = 0
2x = 3
x = 1,5
1) 2x – 3 = 0
2) x + 1 = 0
x = - 1
Giải:
(2x – 3)(x + 1) = 0
Phương trình đã cho có hai nghiệm là x = 1,5 và x = - 1.
?2
Tập nghiệm của phương trình đã cho là S = {1,5; -1 }
a = 0 hoặc b = 0
. Phương trình (1) được gọi là phương trình tích.
Trong bài này, chúng ta chỉ xét các phương trình mà hai vế của nó là hai biểu thức hữu tỉ của ẩn và không chứa ẩn ở mẫu.
(2x – 3)(x + 1) = 0 (1)
1. Phương trình tích và cách giải
Ví dụ1. Giải phương trình: (2x – 3)(x + 1) = 0 (1)
2x – 3 = 0 hoặc x + 1 = 0
2x = 3
x = 1,5
1) 2x – 3 = 0
2) x + 1 = 0
x = - 1
Giải:
(2x – 3)(x + 1) = 0
Tập nghiệm của phương trình đã cho là S = {1,5; -1 }
A(x)
B(x)
. = 0
*Xét phương trình tích có dạng: A(x)B(x) = 0 (trong đó A(x), B(x) là những biểu thức hữu tỉ của ẩn và không chứa ẩn ở mẫu).
. Phương trình (1) được gọi là phương trình tích.
Bước 2: Giải A(x) = 0 và B(x) = 0
Bước 3: Kết luận nghiệm
Cách giải
(lấy tất cả các nghiệm của chúng).
(2x – 3)(x + 1) = 0 (1)
Em hãy lấy ví dụ về phương trình tích?
1. Phương trình tích và cách giải
Ví dụ1. Giải phương trình: (2x – 3)(x + 1) = 0 (1)
2x – 3 = 0 hoặc x + 1 = 0
2x = 3
x = 1,5
1) 2x – 3 = 0
2) x + 1 = 0
x = - 1
Giải:
(2x – 3)(x + 1) = 0
Tập nghiệm của phương trình đã cho là S = {1,5; -1 }
*Xét phương trình tích có dạng: A(x)B(x) = 0 (trong đó A(x), B(x) là những biểu thức hữu tỉ của ẩn và không chứa ẩn ở mẫu).
Bước 2: Giải A(x) = 0 và B(x) = 0
Bước 3: Kết luận nghiệm
Cách giải
(lấy tất cả các nghiệm của chúng).
(2x – 3)(x + 1) = 0 (1)
Bài 1. Hãy chỉ ra phương trình tích trong các phương trình sau:
b)
a)
c)
Bài 2.Giải phương trình:
Bài tập:
d)
e)
1. Phương trình tích và cách giải
Ví dụ1. Giải phương trình: (2x - 3)(x + 1) = 0
2x – 3 = 0 hoặc x + 1 = 0
2x = 3
x = 1,5
1) 2x – 3 = 0
2) x + 1 = 0
x = - 1
Giải:
( 2x – 3 )( x + 1) = 0
Giải phương trình
(x + 1)(x + 4) = (2 – x)(2 + x)
Giải:
2. Áp dụng
(x + 1)(x + 4) = (2 – x)(2 + x)
(x + 1)(x + 4) – (2 – x)(2 + x) = 0
( x2 + x + 4x + 4) – (22 – x2) = 0
2x2 + 5x = 0
x(2x + 5) = 0
1) x = 0 ;
2) 2x + 5 = 0
2x = - 5
x = - 2,5
Vậy tập nghiệm của phương trình đã cho là S = { 0 ; - 2,5 }
x = 0 hoặc 2x + 5 = 0
Tập nghiệm của phương trình đã cho là S = {1,5; -1 }
*Xét phương trình tích có dạng:
Bước 2: Giải A(x) = 0 và B(x) = 0
Bước 3: Kết luận nghiệm
(lấy tất cả các nghiệm của chúng).
Cách giải
x2 + x + 4x + 4 – 4 + x2 = 0
Ví dụ 2.
A(x)B(x) = 0
1. Phương trình tích và cách giải
A(x)B(x) = 0 A(x) = 0 hoặc B(x) = 0
Ví dụ 2. Giải phương trình (x + 1)(x + 4) = (2 – x)(2 + x)
Giải:
2. Áp dụng
(x + 1)(x + 4) = (2 – x)(2 + x)
(x + 1)(x + 4) – (2 – x)(2 + x) = 0
x2 + x + 4x + 4 – 4 + x2 = 0
2x2 + 5x = 0
x(2x + 5) = 0
1) x = 0 ;
2) 2x + 5 = 0
2x = - 5
x = - 2,5
Vậy tập nghiệm của phương trình đã cho là S = { 0 ; - 2,5 }
Bước 1. Đưa phương trình đã cho về dạng phương trình tích.
Bước 2. Giải phương trình tích rồi kết luận.
x = 0 hoặc 2x + 5 = 0
Bước 1. Đưa phương trình đã cho về dạng phương trình tích.
Bước 2. Giải phương trình tích rồi kết luận.
Nhận xét:
x2 + x + 4x + 4 – ( 4 – x2)= 0
1. Phương trình tích và cách giải
A(x)B(x) = 0 A(x) = 0 hoặc B(x) = 0
Ví dụ 2. Giải phương trình
Giải:
2. Áp dụng
(x + 1)(x + 4) = (2 – x)(2 + x)
(x + 1)(x + 4) – (2 – x)(2 + x) = 0
x2 + x + 4x + 4 – 22 + x2 = 0
2x2 + 5x = 0
x(2x + 5) = 0
1) x = 0 ;
2) 2x + 5 = 0
2x = - 5
x = - 2,5
Vậy tập nghiệm của phương trình đã cho là S = { 0 ; - 2,5 }
(x - 1)(x2 + 3x - 2) - (x3 - 1) = 0
Giải phương trình
?3
(x + 1)(x + 4) = (2 – x)( 2 + x)
x = 0 hoặc 2x + 5 = 0
B1. Đưa PT đã cho về dạng PT tích.
B2. Giải PT tích rồi kết luận.
Nhận xét:
Giải:
(x - 1)(x2 + 3x - 2) - (x3 - 1) = 0
(x - 1)[(x2 + 3x - 2) - (x2 + x +1)] = 0
(x – 1)(x2 + 3x – 2 – x2 – x – 1) = 0
(x - 1)(2x - 3) = 0
x - 1 = 0 hoặc 2x - 3 = 0
x - 1 = 0 x = 1
2x - 3 = 0 2x = 3 x = 1,5
Vậy tập nghiệm của phương trình đã cho là S = { 1 ; 1,5 }
1. Phương trình tích và cách giải
A(x)B(x) = 0 A(x) = 0 hoặc B(x) = 0
2. Áp dụng
Cách 2
(x - 1)(x2 + 3x - 2) - (x3 - 1) = 0
x3 + 3x2 - 2x - x2 - 3x + 2 - x3+1 = 0
2x2 - 5x + 3 = 0
2x2 - 2x - 3x + 3 = 0
(2x2 - 2x) - (3x - 3) = 0
2x(x - 1) - 3(x - 1) = 0
(x - 1)(2x - 3) = 0
x - 1 = 0 hoặc 2x - 3 = 0
x - 1 = 0 x = 1
2x - 3 = 0 2x = 3 x = 1,5
Vậy tập nghiệm của phương trình đã cho là S = { 1 ; 1,5 }
(x - 1)(x2 + 3x - 2) - (x3 - 1) = 0
Giải phương trình
?3
Giải:
(x - 1)(x2 + 3x - 2) - (x3 - 1) = 0
(x - 1)[(x2 + 3x - 2) - (x2 + x +1)] = 0
(x – 1)(x2 + 3x – 2 – x2 – x – 1) = 0
(x - 1)(2x - 3) = 0
x - 1 = 0 hoặc 2x - 3 = 0
x - 1 = 0 x = 1
2x - 3 = 0 2x = 3 x = 1,5
Vậy tập nghiệm của phương trình đã cho là S = { 1 ; 1,5 }
Cách 1
1. Phương trình tích và cách giải
x = 1
x + 1 = 0 hoặc x - 1 = 0 hoặc 2x - 1 = 0
Vậy tập nghiệm của phương trình (3) là: S = {-1; 1 ; 0,5}
2x3 = x2 + 2x – 1
Ví dụ 3: Giải phương trình
Giải:
2) x - 1 = 0
3) 2x - 1 = 0
x = 0,5
2x3 = x2 + 2x - 1
2x3 - x2 - 2x + 1 = 0
(2x3 - 2x) - (x2 - 1) = 0
2x(x2 - 1) - (x2 - 1) = 0
(x2 - 1) (2x - 1) = 0
(x + 1)(x - 1)(2x - 1) = 0
x = - 1
1) x + 1 = 0
A(x)B(x) = 0 A(x) = 0 hoặc B(x) = 0
Ví dụ 2. Giải phương trình
2. Áp dụng
(x + 1)(x + 4) = (2 – x)( 2 + x)
Bước 1. Đưa phương trình đã cho về dạng phương trình tích.
Bước 2. Giải phương trình tích rồi kết luận.
Nhận xét:
Bước 1. Đưa phương trình đã cho về dạng phương trình tích.
Bước 2. Giải phương trình tích rồi kết luận.
Nhận dạng phương trình tích.
Cách giải phương trình tích A(x)B(x)=0
Cách giải phương trình đưa được về phương trình tích
Bước 2: Giải A(x) = 0 và B(x) = 0
Bước 3: Kết luận nghiệm
(lấy tất cả các nghiệm của chúng).
Bước 1:
Giải phương trình tích rồi kết luận.
Đưa phương trình đã cho về dạng phương trình tích.
Bước 2:
1.Phương trình tích và cách giải
A(x)B(x) = 0 A(x) = 0 hoặc B(x) = 0
Ví dụ 2. Giải phương trình
2. Áp dụng
(x + 1)(x + 4) = (2 – x)( 2 + x)
B1. Đưa PT đã cho về dạng PT tích.
B2. Giải PT tích rồi kết luận.
Nhận xét:
2x3 = x2 + 2x – 1
Ví dụ 3: Giải phương trình
.Trong trường hợp vế trái là tích của nhiều hơn hai nhân tử, ta cũng giải tương tự.
Bài 3. Giải phương trình:
x2 (x – 86) = (x – 86)(5x – 6)
x - 2 = 0 hoặc x - 3 = 0
1) x – 2 = 0 x = 2
Vậy tập nghiệm của phương trình đã cho là : S = { 3 ; 2}
2) x – 3 = 0 x = 3
x2 (x – 86) = (x – 86)(5x – 6)
x2 = 5x – 6
x2 – 5x + 6 = 0
(x – 2)(x– 3) = 0
Bạn Hoa giải phương trình trên như sau:
Theo em bạn Hoa giải đúng hay sai, tại sao?
Bạn Hoa giải sai, vì đã chia cả 2 vế của phương trình cho x – 86.
1.Phương trình tích và cách giải
A(x)B(x) = 0 A(x) = 0 hoặc B(x) = 0
Ví dụ 2. Giải phương trình
2. Áp dụng
(x + 1)(x + 4) = (2 – x)( 2 + x)
B1. Đưa PT đã cho về dạng PT tích.
B2. Giải PT tích rồi kết luận.
Nhận xét:
2x3 = x2 + 2x – 1
Ví dụ 3: Giải phương trình
.Trong trường hợp vế trái là tích của nhiều hơn hai nhân tử, ta cũng giải tương tự.
Bài 3. Giải phương trình:
x2 (x – 86) = (x – 86)(5x – 6)
x - 86 = 0 hoặc x - 2 = 0
hoặc x - 3 = 0
1) x - 86 = 0 x = 86
2) x – 2 = 0 x = 2
Vậy tập nghiệm của phương trình đã cho là : S = { }
3) x – 3 = 0 x = 3
x2 (x – 86) – (x – 86)(5x – 6) = 0
(x – 86)[x2 – (5x – 6)] = 0
(x – 86)(x2 – 5x + 6) = 0
(x – 86)(x – 2)(x– 3) = 0
3 ; 2 ; 86
3 ; 2 ; 86
1.Phương trình tích và cách giải
A(x)B(x) = 0 A(x) = 0 hoặc B(x) = 0
2. Áp dụng
Vậy tập nghiệm của phương trình đã cho là : S = { 0 ; - 1 }
Giải phương trình :
(x3 + x2) + (x2 + x) = 0
x2 (x + 1) + x(x + 1) = 0
x(x + 1)2 = 0
x(x + 1) (x + 1) = 0
x = 0 hoặc x + 1 = 0
1) x = 0
2) x +1 = 0 x = - 1
?4
Bài 22(SGK/17). Giải phương trình:
f ) x2 – x – (3x – 3) = 0
(x – 1)(x – 3) = 0
x – 1 = 0 hoặc x – 3 = 0
1) x – 1 = 0 x = 1
x(x – 1) – 3(x – 1) = 0
(x2 – x ) – (3x – 3) = 0
2) x – 3 = 0 x = 3
Vậy tập nghiệm của phương trình đã cho là : S = { 1 ; 3 }
(5,0 điểm)
(1,5 điểm)
(1,5 điểm)
(2,0 điểm)
(5,0 điểm)
(1,5 điểm)
(1,5 điểm)
(2,0 điểm)
HOẠT ĐỘNG NHÓM THEO BÀN
Dãy 1: ?4 - Dãy 2: ý f)
1. Phương trình tích và cách giải
2x3 = x2 + 2x – 1
Ví dụ 3: Giải phương trình
A(x)B(x) = 0 A(x) = 0 hoặc B(x) = 0
Ví dụ 2. Giải phương trình
2. Áp dụng
(x + 1)(x + 4) = (2 – x)( 2 + x)
Bước 1. Đưa phương trình đã cho về dạng phương trình tích.
Bước 2. Giải phương trình tích rồi kết luận.
Nhận xét:
(3)
Bài 4 : Cho phương trình (ẩn x)
Giải phương trình khi k = 1
b) Tìm các giá trị của k sao cho phương trình nhận x = - 2 ….là nghiệm.
a)
HƯỚNG DẪN VỀ NHÀ:
- Học kỹ bài, nhận dạng được phương trình tích
nắm được cách giải phương trình tích.
- Làm bài tập 21; 22 (các ý còn lại); 23 SGK /17. Học sinh giỏi và khá làm thêm bài 30; 32 SBT/10
- Giờ sau : Luyện tập.
Kính chúc các thầy cô giáo
Xin trân trọng cảm ơn !
mạnh khỏe – hạnh phúc !
Chúc các em chăm ngoan - học giỏi !
* Một số tài liệu cũ có thể bị lỗi font khi hiển thị do dùng bộ mã không phải Unikey ...
Người chia sẻ: Trần Thị Ngọc
Dung lượng: |
Lượt tài: 3
Loại file:
Nguồn : Chưa rõ
(Tài liệu chưa được thẩm định)