Chương II. §3. Trường hợp bằng nhau thứ nhất của tam giác: cạnh-cạnh-cạnh (c.c.c)

Chia sẻ bởi Trần Xuân Mai | Ngày 22/10/2018 | 43

Chia sẻ tài liệu: Chương II. §3. Trường hợp bằng nhau thứ nhất của tam giác: cạnh-cạnh-cạnh (c.c.c) thuộc Hình học 7

Nội dung tài liệu:

Chào mừng quí thầy cô giáo
Trường THCS Phú Cường
Lớp 7a3
Định nghĩa:
Hai tam giác bằng nhau là hai tam giác có các cạnh tương ứng bằng nhau, các góc tương ứng bằng nhau.
* Hãy nêu định nghĩa hai tam giác bằng nhau?
B
A
* ? ABC = ? A`B`C` khi nào?
<
>
Ab = a`b`;
; ;
? ABC = ? A`B`C`
AC = a`C`;
bC = b`C`;
=
KIỂM TRA BÀI CŨ
?
B
C
A
B`
C`
A`
?abc ?A`B`C`
?
=
Tiết 23 §3. TRƯỜNG HỢP BẰNG NHAU THỨ NHẤT CỦA TAM GIÁC CẠNH CẠNH CẠNH (C-C-C)
1. Vẽ tam giác biết ba cạnh:
Bài toán 1:
Vẽ tam giác ABC biết AB = 2cm, BC = 4cm, AC = 3cm.
Giải:
- Vẽ một trong 3 cạnh đã cho, chẳng hạn vẽ cạnh BC = 4cm.
- Trên cùng một nữa mặt phẳng bờ BC, vẽ các cung tròn (B ; 2 cm) và (C ; 3 cm) .
- Hai cung tròn trên cắt nhau tại A.
- Vẽ các đoạn thẳng AB, AC, ta được tam giác ABC.

B
C
A

Tiết 23 §3. TRƯỜNG HỢP BẰNG NHAU THỨ NHẤT CỦA TAM GIÁC CẠNH CẠNH CẠNH (C.C.C)
1. Vẽ tam giác biết ba cạnh:
Bài toán 1:
Vẽ tam giác ABC biết AB = 2cm, BC = 4cm, AC = 3cm.
A
B
C
Bài toán 2:
Cho ?ABC như hình vừa vẽ. Hãy vẽ A`B`C`
Giải: (SGK)
sao cho: A`B`= AB; B`C` = BC ; A`C` = AC?
Ti?t23 �3. TRU?NG H?P B?NG NHAU TH? NH?T C?A TAM GI�C C?NH C?NH C?NH (C.C.C)
1. Vẽ tam giác biết ba cạnh:
Bài toán 1:
Vẽ tam giác ABC biết AB = 2cm, BC = 4cm, AC = 3cm.
Bài toán 2:
Giải: (SGK)
Cho ?ABC như hình vừa vẽ. Hãy vẽ ?ABC
sao cho: A`B`= AB; B`C = BC ; A`C = AC?
Lúc đầu ta đã biết những thông tin gì về các cạnh của hai tam giác?
Từ đó em dự đoán gì về hai tam giác trên?
Sau khi đo các góc của hai tam giác, em có kết quả như thế nào?
Hãy dùng thước đo các góc của hai tam giác các em vừa vẽ?
AB = A`B` ; AC = A`C` ; BC = B`C`
Sau khi đo:
4cm
C
Tiết 23 §3. TRƯỜNG HỢP BẰNG NHAU THỨ NHẤT CỦA TAM GIÁC CẠNH CẠNH CẠNH (C.C.C)
Như vậy, lúc đầu hai tam giác chỉ cho 3 cặp cạnh bằng nhau và sau khi đo đạc thì hai tam giác này đã bằng nhau. Trường hợp bằng nhau trên chính là nội dung của phần 2
Lúc đầu ta có:
940
= 320
= 320
= 540
= 940
540
540
 ABC =  A`B`C`

= 940
= 540
A
2cm
3cm
B
320
940
320
Tiết 23 §3. TRƯỜNG HỢP BẰNG NHAU THỨ NHẤT CỦA TAM GIÁC CẠNH CẠNH CẠNH (C.C.C)
1. Vẽ tam giác biết ba cạnh:
Bài toán 1:
Giải: (SGK)
Bài toán 2: Vẽ ?A`B`C` biết A`B` = AB; A`C` = AC; B`C` = BC
?ABC: AB = 2cm; AC = 3cm; BC = 4cm
2. Trường hợp bằng nhau cạnh - cạnh - cạnh:
Qua hai bài toán trên em có
dự đoán nào?
Hai tam giác có ba cạnh bằng nhau thì bằng nhau
Tính chất: (thừa nhận)
Nếu ba cạnh của tam giác này bằng ba cạnh của tam giác kia thì hai tam giác đó bằng nhau
Nếu ?ABC và ?A`B`C` có:
AB = A’B’; AC = A’C’; BC = B’C’
Thì ta kết luận gì về hai tam giác này?
(c.c.c)
Tiết 23§3. TRƯỜNG HỢP BẰNG NHAU THỨ NHẤT CỦA TAM GIÁC CẠNH CẠNH CẠNH (C.C.C)
2. Trường hợp bằng nhau cạnh - cạnh - cạnh:
Tính chất:
Nếu ba cạnh của tam giác này bằng ba cạnh của tam giác kia thì hai tam giác đó bằng nhau.
1. Vẽ tam giác biết ba cạnh:
Bài toán 1:
Giải: (SGK)
Bài toán 2: (SGK)
(SGK)
Bài tập 17 SGK/114: Trên mỗi hình có các tam giác nào bằng nhau? Vì sao?
Xét ABC và ABD có:
AB là cạnh chung
AC = ……….(gt)
BC = …………(gt)
Do đó ABC = ABD (c.c.c)
Xét ………………………. Có:
…………………………………………..
………………………(gt)
………………………(gt)
Do đó …………………………………..
AD
BD
MPQ và QNM
MQ là cạnh chung
MP = NQ
PQ = MN
MPQ = QNM (c.c.c)
Tiết 23§3. TRƯỜNG HỢP BẰNG NHAU THỨ NHẤT CỦA TAM GIÁC CẠNH CẠNH CẠNH (C.C.C)
2. Trường hợp bằng nhau cạnh - cạnh - cạnh:
Tính chất:
Nếu ba cạnh của tam giác này bằng ba cạnh của tam giác kia thì hai tam giác đó bằng nhau.
1. Vẽ tam giác biết ba cạnh:
Bài toán 1:
Giải: (SGK)
Bài toán 2: (SGK)
(SGK)
Bài tập:
?2
Tính số đo của góc B trong hình 67?
1200
Tiết 23§3. TRƯỜNG HỢP BẰNG NHAU THỨ NHẤT CỦA TAM GIÁC CẠNH CẠNH CẠNH (C.C.C)
- Học thuộc và biết vận dụng trường hợp bằng nhau thứ nhất của hai tam giác vào giải bài tập.
Làm các bài tập:15,16,19,20,21 SGK /114
Xem l?i cỏch v? tam giỏc bi?t hai c?nh v� gúc xen gi?a
Hướng dẫn bài 21:
M
N
2. Trường hợp bằng nhau cạnh - cạnh - cạnh:
Tính chất:
Nếu ba cạnh của tam giác này bằng ba cạnh của tam giác kia thì hai tam giác đó bằng nhau.
1. Vẽ tam giác biết ba cạnh:
Bài toán 1:
Giải: (SGK)
Bài toán 2: (SGK)
(SGK)
Tiết 23§3. TRƯỜNG HỢP BẰNG NHAU THỨ NHẤT CỦA TAM GIÁC CẠNH CẠNH CẠNH (C.C.C)
Có thể em chưa biết
Khi độ dài ba cạnh của một tam giác đã xác định thì hình dạng và kích thước của tam giác đó cũng hoàn toàn xác định. Tính chất đó của hình tam giác được ứng dụng nhiều trong thực tế.
Chính vì thế trong các công trình xây dựng , các thanh sắt thường được ghép, tạo với nhau thành các tam giác, chẳng hạn như các hình sau đây.
Tiết 23§3. TRƯỜNG HỢP BẰNG NHAU THỨ NHẤT CỦA TAM GIÁC CẠNH CẠNH CẠNH (C.C.C)


Cầu Tràng Tiền - Huế
Cầu Long Biên
Tháp Eiffel
XIN CHÂN THÀNH CÁM ƠN QUÍ THẦY CÔ CÙNG CÁC EM HỌC SINH
* Một số tài liệu cũ có thể bị lỗi font khi hiển thị do dùng bộ mã không phải Unikey ...

Người chia sẻ: Trần Xuân Mai
Dung lượng: | Lượt tài: 1
Loại file:
Nguồn : Chưa rõ
(Tài liệu chưa được thẩm định)