Chương I. §4. Những hằng đẳng thức đáng nhớ (tiếp)
Chia sẻ bởi HOÀNG THỊ BƯỞI |
Ngày 10/05/2019 |
147
Chia sẻ tài liệu: Chương I. §4. Những hằng đẳng thức đáng nhớ (tiếp) thuộc Đại số 8
Nội dung tài liệu:
1. Lập phương của một tổng
Với A và B là các biểu thức tùy ý, ta có:
Áp dụng:
a) Tính ( x+1)3.
b)Tính ( 2x+y)3.
1. Lập phương của một tổng
1. Lập phương của một tổng
Áp dụng:
a) Tính ( x+1)3.
1. Lập phương của một tổng
Áp dụng:
Giải:
b)Tính ( 2x+y)3.
2. Lập phương của một hiệu
Cách 2: Có thể tính: (a - b)(a -b)2 =?
Cách 1: Vận dụng công thức tính lập phương của một tổng
Có [a +(- b)] 3 = a3 + 3a2 (-b) + 3a (-b)2 +(-b3) = a3 - 3a2 b + 3a b2 -b3
2. Lập phương của một hiệu
Với A và B là các biểu thức tùy ý, ta có:
2. Lập phương của một hiệu
Áp dụng:
b) Tính: (x - 3y )3.
2. Lập phương của một hiệu
Áp dụng:
2. Lập phương của một hiệu
Áp dụng:
Giải:
(x - 3y )3 = x3 – 3.x23y +3x(3y)2 - (3y)3
= x3 – 9.x2y +27xy2 - 27y3
b) Tính: (x - 3y )3.
2. Lập phương của một hiệu
1) ( 2x-1)2 = (1 – 2x)2
2) ( x - 1)3 = (1 – x)3
3) ( x + 1)3 = (1 + x)3
c) trong các khẳng định sau, khẳng định nào đúng
4) x2 -1 = 1- x2
2) ( x - 3)2 = x2 - 2x + 9
Đ
Đ
S
S
S
Hãy nêu ý kiến của em về quan hệ của ( A- B)2 với ( B- A)2, ( A- B)3 với ( B- A)3?
Có: ( A- B)2 = ( B- A)2
( A- B)3 = -( B- A)3
Tổng quát: ( A- B)2k = ( B- A)2k
( A- B)2k+1 = -( B- A)2k+1
* Luyện tập – củng cố:
Bài 26 –sgk tr 14 ý a.
Giải:
* Luyện tập – củng cố:
Tính giá trị biểu thức
b) x3 - 6x2 + 12x – 8 tại x = 22
Áp dụng bài 28 –sgk tr 14
a) x3 + 12x2 + 48x + 64 tại x = 6
* Luyện tập – củng cố:
Giải: ý a)Giá trị biểu thức:
Áp dụng bài 28 –sgk tr 14
x3 + 12x2 + 48x + 64 = ( x+4)3 = ( 6 + 4)3 = 103 = 1000, tại x = 6.
* Luyện tập – củng cố:
Giải: ý b)Giá trị biểu thức:
Áp dụng bài 28 –sgk tr 14
x3 - 6x2 + 12x – 8 = ( x- 2)3 = ( 22 – 2 )3 =203 = 8000, tại x = 22
NHỮNG HẰNG ĐẲNG THỨC ĐÁNG NHỚ
1. Lập phương của một tổng
2. Lập phương của một hiệu
Với A và B là các biểu thức tùy ý, ta có:
Hướng dẫn về nhà:
Học thuộc ba hằng đẳng thức trên.
Làm bài tập: 27,29 sgk tr 14.
Với A và B là các biểu thức tùy ý, ta có:
Áp dụng:
a) Tính ( x+1)3.
b)Tính ( 2x+y)3.
1. Lập phương của một tổng
1. Lập phương của một tổng
Áp dụng:
a) Tính ( x+1)3.
1. Lập phương của một tổng
Áp dụng:
Giải:
b)Tính ( 2x+y)3.
2. Lập phương của một hiệu
Cách 2: Có thể tính: (a - b)(a -b)2 =?
Cách 1: Vận dụng công thức tính lập phương của một tổng
Có [a +(- b)] 3 = a3 + 3a2 (-b) + 3a (-b)2 +(-b3) = a3 - 3a2 b + 3a b2 -b3
2. Lập phương của một hiệu
Với A và B là các biểu thức tùy ý, ta có:
2. Lập phương của một hiệu
Áp dụng:
b) Tính: (x - 3y )3.
2. Lập phương của một hiệu
Áp dụng:
2. Lập phương của một hiệu
Áp dụng:
Giải:
(x - 3y )3 = x3 – 3.x23y +3x(3y)2 - (3y)3
= x3 – 9.x2y +27xy2 - 27y3
b) Tính: (x - 3y )3.
2. Lập phương của một hiệu
1) ( 2x-1)2 = (1 – 2x)2
2) ( x - 1)3 = (1 – x)3
3) ( x + 1)3 = (1 + x)3
c) trong các khẳng định sau, khẳng định nào đúng
4) x2 -1 = 1- x2
2) ( x - 3)2 = x2 - 2x + 9
Đ
Đ
S
S
S
Hãy nêu ý kiến của em về quan hệ của ( A- B)2 với ( B- A)2, ( A- B)3 với ( B- A)3?
Có: ( A- B)2 = ( B- A)2
( A- B)3 = -( B- A)3
Tổng quát: ( A- B)2k = ( B- A)2k
( A- B)2k+1 = -( B- A)2k+1
* Luyện tập – củng cố:
Bài 26 –sgk tr 14 ý a.
Giải:
* Luyện tập – củng cố:
Tính giá trị biểu thức
b) x3 - 6x2 + 12x – 8 tại x = 22
Áp dụng bài 28 –sgk tr 14
a) x3 + 12x2 + 48x + 64 tại x = 6
* Luyện tập – củng cố:
Giải: ý a)Giá trị biểu thức:
Áp dụng bài 28 –sgk tr 14
x3 + 12x2 + 48x + 64 = ( x+4)3 = ( 6 + 4)3 = 103 = 1000, tại x = 6.
* Luyện tập – củng cố:
Giải: ý b)Giá trị biểu thức:
Áp dụng bài 28 –sgk tr 14
x3 - 6x2 + 12x – 8 = ( x- 2)3 = ( 22 – 2 )3 =203 = 8000, tại x = 22
NHỮNG HẰNG ĐẲNG THỨC ĐÁNG NHỚ
1. Lập phương của một tổng
2. Lập phương của một hiệu
Với A và B là các biểu thức tùy ý, ta có:
Hướng dẫn về nhà:
Học thuộc ba hằng đẳng thức trên.
Làm bài tập: 27,29 sgk tr 14.
* Một số tài liệu cũ có thể bị lỗi font khi hiển thị do dùng bộ mã không phải Unikey ...
Người chia sẻ: HOÀNG THỊ BƯỞI
Dung lượng: |
Lượt tài: 3
Loại file:
Nguồn : Chưa rõ
(Tài liệu chưa được thẩm định)