CHON DOI TUYEN TOAN
Chia sẻ bởi Thcs Thanh Liên |
Ngày 12/10/2018 |
39
Chia sẻ tài liệu: CHON DOI TUYEN TOAN thuộc Đại số 8
Nội dung tài liệu:
PHÒNG GIÁO DỤC VÀ ĐÀO TẠO
QUỲNH LƯU
KIỂM TRA HỌC SINH XẾP LOẠI HỌC LỰC GIỎI
Năm học 2009-2010
Môn: Toán 8 - Thời gian làm bài: 150 phút
Câu 1: (3,0 điểm)
a, Tìm số tự nhiên có hai chữ số chia hết cho 3. Nếu đổi vị trí chữ số hàng chục và chữ số hàng đơn vị thì được một sô có hai chữ số nhỏ hơn số ban đầu là 45.
b, Với n là số tự nhiên, chứng minh rằng n5 và n có chữ số tận cùng bằng nhau
Câu 2: (2,0 điểm) Cho a + b = x + y; a2 + b2 = x2 + y2.
Chứng minh rằng: a2010 + b2010 = x2010 + y2010
Câu 3: (2,0 điểm)
a, Giải phương trình:
b, Giải hệ phương trình:
Câu 4: (2,0 điểm) Cho hình vuông ABCD, O là giao điểm của hai đường chéo. Vẽ góc xOy = 450 sao cho Ox cắt BC tại G (G nằm giữa B, C) Oy cắt DC tại H (H nằm giữa D, C). Gọi M là trung điểm AB.
Chứng minh rằng:
a, ΔHOD đồng dạng ΔOGB.
b, GM // AH.
Câu 5: (1,0 điểm) Cho ΔABC biết góc A bằng 2 lần góc B và bằng 4 lần góc C.
Chứng minh rằng: .
Hết
PHÒNG GIÁO DỤC VÀ ĐÀO TẠO
QUỲNH LƯU
HƯỚNG DẪN CHẤM
Kiểm tra HS học lực giỏi - Năm học 2009-2010
Môn: Toán Lớp 8
Câu
Nội dung
Điểm
1
Gọi số cần tìm là
ta có (*)
mà (**)
Từ (*) và (**) suy ra a + b = 9; 15
Với
Với
Vậy số phải tìm là 72
Xét n5 – n = n(n4 – 1) = n(n2 + 1)(n – 1)(n + 1)
= n(n2 – 4 + 5)(n – 1)(n + 1)
= (n – 2)(n – 1)n(n + 1)(n +2) – 5n(n – 1)(n + 1)
Vì (n – 2)(n – 1)n(n + 1)(n +2)10, 5n(n – 1)(n + 1) 10
Suy ra điều phải chứng minh
0,5
0,5
0,5
0,5
0,5
0,5
2
Từ a + b = x + y (*)
a – x = y – b
Mặt khác a2 + b2 = x2 + y2
a2 – x2 = y2 – b2 (a + x)(a – x) = (y + b)(y – b)
(a + x)(a – x) = (y + b)(a – x)
Với (1)
Với (2)
Từ (1) và (2) suy ra điều phải chứng minh
0,5
0,5
0,5
0,5
3
a, x4 + x3 + 2x -4 =0 (x - 1)(x + 2)(x2 + 2) = 0 => x=1 hoặc x = -2
b,
+) Với
+) Với
1
1
4
a, HOD + O1=1350
OGB + O1=1350 nên HOD = OGB
->ΔHOD đồng dạng ΔOGB (g.g)
b, từ câu a, suy ra :
đặt BM = a
Thì AD = 2a , OB = OD =
Ta có HD.BG = OB.OD =. =2a.a =AD.BM
=> => ΔAHD đồng dạng với ΔGMB(c.g.c)
=> AHD = GMB do đó HAB = GMB => MG // AH
1
1
5
Gọi D là giao điểm của AB
với đường trung trực của đoạn BC.
Khi đó ta có:
ΔBCD cân tại D, ΔACD cân tại C
(1)
Do CA là phân giác (Vì DC =DB) (2)
Cộng theo vế (1) và (2) ta được:
QUỲNH LƯU
KIỂM TRA HỌC SINH XẾP LOẠI HỌC LỰC GIỎI
Năm học 2009-2010
Môn: Toán 8 - Thời gian làm bài: 150 phút
Câu 1: (3,0 điểm)
a, Tìm số tự nhiên có hai chữ số chia hết cho 3. Nếu đổi vị trí chữ số hàng chục và chữ số hàng đơn vị thì được một sô có hai chữ số nhỏ hơn số ban đầu là 45.
b, Với n là số tự nhiên, chứng minh rằng n5 và n có chữ số tận cùng bằng nhau
Câu 2: (2,0 điểm) Cho a + b = x + y; a2 + b2 = x2 + y2.
Chứng minh rằng: a2010 + b2010 = x2010 + y2010
Câu 3: (2,0 điểm)
a, Giải phương trình:
b, Giải hệ phương trình:
Câu 4: (2,0 điểm) Cho hình vuông ABCD, O là giao điểm của hai đường chéo. Vẽ góc xOy = 450 sao cho Ox cắt BC tại G (G nằm giữa B, C) Oy cắt DC tại H (H nằm giữa D, C). Gọi M là trung điểm AB.
Chứng minh rằng:
a, ΔHOD đồng dạng ΔOGB.
b, GM // AH.
Câu 5: (1,0 điểm) Cho ΔABC biết góc A bằng 2 lần góc B và bằng 4 lần góc C.
Chứng minh rằng: .
Hết
PHÒNG GIÁO DỤC VÀ ĐÀO TẠO
QUỲNH LƯU
HƯỚNG DẪN CHẤM
Kiểm tra HS học lực giỏi - Năm học 2009-2010
Môn: Toán Lớp 8
Câu
Nội dung
Điểm
1
Gọi số cần tìm là
ta có (*)
mà (**)
Từ (*) và (**) suy ra a + b = 9; 15
Với
Với
Vậy số phải tìm là 72
Xét n5 – n = n(n4 – 1) = n(n2 + 1)(n – 1)(n + 1)
= n(n2 – 4 + 5)(n – 1)(n + 1)
= (n – 2)(n – 1)n(n + 1)(n +2) – 5n(n – 1)(n + 1)
Vì (n – 2)(n – 1)n(n + 1)(n +2)10, 5n(n – 1)(n + 1) 10
Suy ra điều phải chứng minh
0,5
0,5
0,5
0,5
0,5
0,5
2
Từ a + b = x + y (*)
a – x = y – b
Mặt khác a2 + b2 = x2 + y2
a2 – x2 = y2 – b2 (a + x)(a – x) = (y + b)(y – b)
(a + x)(a – x) = (y + b)(a – x)
Với (1)
Với (2)
Từ (1) và (2) suy ra điều phải chứng minh
0,5
0,5
0,5
0,5
3
a, x4 + x3 + 2x -4 =0 (x - 1)(x + 2)(x2 + 2) = 0 => x=1 hoặc x = -2
b,
+) Với
+) Với
1
1
4
a, HOD + O1=1350
OGB + O1=1350 nên HOD = OGB
->ΔHOD đồng dạng ΔOGB (g.g)
b, từ câu a, suy ra :
đặt BM = a
Thì AD = 2a , OB = OD =
Ta có HD.BG = OB.OD =. =2a.a =AD.BM
=> => ΔAHD đồng dạng với ΔGMB(c.g.c)
=> AHD = GMB do đó HAB = GMB => MG // AH
1
1
5
Gọi D là giao điểm của AB
với đường trung trực của đoạn BC.
Khi đó ta có:
ΔBCD cân tại D, ΔACD cân tại C
(1)
Do CA là phân giác (Vì DC =DB) (2)
Cộng theo vế (1) và (2) ta được:
* Một số tài liệu cũ có thể bị lỗi font khi hiển thị do dùng bộ mã không phải Unikey ...
Người chia sẻ: Thcs Thanh Liên
Dung lượng: 146,00KB|
Lượt tài: 3
Loại file: doc
Nguồn : Chưa rõ
(Tài liệu chưa được thẩm định)