Bồi HSG Toan 4
Chia sẻ bởi Nguyễn Thị Dung |
Ngày 09/10/2018 |
28
Chia sẻ tài liệu: Bồi HSG Toan 4 thuộc Toán học 4
Nội dung tài liệu:
CHUYÊN ĐỀ “DÃY SỐ”
Kế hoạch bồi dưỡng gồm 7 buổi; mỗi buổi 2 tiết.
Buổi 1: Tiết 1: Cung cấp kiến thức về dãy số.
Xác định quy luật của dãy số.
Tiết 2: Dạng 1: Điền thêm số vào sau, giữa hoặc trước một dãy số.
Buổi 2: Tiết 1: Dạng 2: Xác định số a có thuộc dãy đã cho hay không.
Tiết 2: Luyện tập dạng 1, dạng 2.
Buổi 3: Tiết 1: Dạng 3: Tìm số số hạng của dãy.
Tiết 2: Luyện tập dạng 3.
Buổi 4: Tiết 1: Dạng 4: Tính tổng các số hạng của dãy số.
Tiết 2: Luyện tập dạng 4.
Buổi 5: Luyện tập chung (2 tiết).
Buổi 6: Tiết 1: Kiểm tra 40 phút.
Tiết 2: Chữa bài.
Buổi 7: Trả bài kiểm tra, nhận xét bài làm của học sinh.
- Ra bài tập tự luyện.
1. Muốn làm được các bài toán về dãy số ta cần phải nắm được các kiến thức sau:
Trong dãy số tự nhiên liên tiếp cứ một số chẵn lại đến một số lẻ rồi lại đến một số chẵn… Vì vậy, nếu:
Dãy số bắt đầu từ số lẻ và kết thúc là số chẵn thì số lượng các số lẻ bằng số lượng các số chẵn.
Dãy số bắt đầu từ số chẵn và kết thúc cũng là số lẻ thì số lượng các số chẵn bằng số lượng các số lẻ.
Nếu dãy số bắt đầu từ số lẻ và kết thúc cũng là số lẻ thì số lượng các số lẻ nhiều hơn các số chẵn là 1 số.
Nếu dãy số bắt đầu từ số chẵn và kết thúc cũng là số chẵn thì số lượng các số chẵn nhiều hơn các số lẻ là 1 số.
a. Trong dãy số tự nhiên liên tiếp bắt đầu từ số 1 thì số lượng các số trong dãy số chính bằng giá trị của số cuối cùng của số ấy.
b. Trong dãy số tự nhiên liên tiếp bắt đầu từ số khác số 1 thì số lượng các số trong dãy số bằng hiệu giữa số cuối cùng của dãy số với số liền trước số đầu tiên.
2. Các bài toán về dãy số có thể phân ra các nhóm sau:
+ Dãy số cách đều:
- Dãy số tự nhiên.
- Dãy số chẵn, lẻ.
- Dãy số chia hết hoặc không chia hết cho một số nào đó.
+ Dãy số không cách đều.
- Dãy có tổng(hiệu) giữa hai số liên tiếp là một dãy số.
3. Cách giải các dạng toán về dãy số:
Dạng 1: Điền thêm số vào sau, giữa hoặc trước một dãy số
Trước hết ta cần xác định lại quy luật của dãy số:
+ Mỗi số (kể từ số thứ 2) bằng số đứng trước nó cộng(hoặc trừ) với một số tự nhiên a.
+ Mỗi số (kể từ số thứ 2) bằng số đứng trước nó nhân (hoặc chia) với một số tự nhiên q khác 0.
+ Mỗi số (kể từ số thứ 3) bằng tổng 2 số đứng trước nó.
+ Mỗi số (kể từ số thứ 4) bằng tổng của số đứng trước nó cộng với số tự nhiên d rồi cộng với số thứ tự của số ấy.
Kế hoạch bồi dưỡng gồm 7 buổi; mỗi buổi 2 tiết.
Buổi 1: Tiết 1: Cung cấp kiến thức về dãy số.
Xác định quy luật của dãy số.
Tiết 2: Dạng 1: Điền thêm số vào sau, giữa hoặc trước một dãy số.
Buổi 2: Tiết 1: Dạng 2: Xác định số a có thuộc dãy đã cho hay không.
Tiết 2: Luyện tập dạng 1, dạng 2.
Buổi 3: Tiết 1: Dạng 3: Tìm số số hạng của dãy.
Tiết 2: Luyện tập dạng 3.
Buổi 4: Tiết 1: Dạng 4: Tính tổng các số hạng của dãy số.
Tiết 2: Luyện tập dạng 4.
Buổi 5: Luyện tập chung (2 tiết).
Buổi 6: Tiết 1: Kiểm tra 40 phút.
Tiết 2: Chữa bài.
Buổi 7: Trả bài kiểm tra, nhận xét bài làm của học sinh.
- Ra bài tập tự luyện.
1. Muốn làm được các bài toán về dãy số ta cần phải nắm được các kiến thức sau:
Trong dãy số tự nhiên liên tiếp cứ một số chẵn lại đến một số lẻ rồi lại đến một số chẵn… Vì vậy, nếu:
Dãy số bắt đầu từ số lẻ và kết thúc là số chẵn thì số lượng các số lẻ bằng số lượng các số chẵn.
Dãy số bắt đầu từ số chẵn và kết thúc cũng là số lẻ thì số lượng các số chẵn bằng số lượng các số lẻ.
Nếu dãy số bắt đầu từ số lẻ và kết thúc cũng là số lẻ thì số lượng các số lẻ nhiều hơn các số chẵn là 1 số.
Nếu dãy số bắt đầu từ số chẵn và kết thúc cũng là số chẵn thì số lượng các số chẵn nhiều hơn các số lẻ là 1 số.
a. Trong dãy số tự nhiên liên tiếp bắt đầu từ số 1 thì số lượng các số trong dãy số chính bằng giá trị của số cuối cùng của số ấy.
b. Trong dãy số tự nhiên liên tiếp bắt đầu từ số khác số 1 thì số lượng các số trong dãy số bằng hiệu giữa số cuối cùng của dãy số với số liền trước số đầu tiên.
2. Các bài toán về dãy số có thể phân ra các nhóm sau:
+ Dãy số cách đều:
- Dãy số tự nhiên.
- Dãy số chẵn, lẻ.
- Dãy số chia hết hoặc không chia hết cho một số nào đó.
+ Dãy số không cách đều.
- Dãy có tổng(hiệu) giữa hai số liên tiếp là một dãy số.
3. Cách giải các dạng toán về dãy số:
Dạng 1: Điền thêm số vào sau, giữa hoặc trước một dãy số
Trước hết ta cần xác định lại quy luật của dãy số:
+ Mỗi số (kể từ số thứ 2) bằng số đứng trước nó cộng(hoặc trừ) với một số tự nhiên a.
+ Mỗi số (kể từ số thứ 2) bằng số đứng trước nó nhân (hoặc chia) với một số tự nhiên q khác 0.
+ Mỗi số (kể từ số thứ 3) bằng tổng 2 số đứng trước nó.
+ Mỗi số (kể từ số thứ 4) bằng tổng của số đứng trước nó cộng với số tự nhiên d rồi cộng với số thứ tự của số ấy.
* Một số tài liệu cũ có thể bị lỗi font khi hiển thị do dùng bộ mã không phải Unikey ...
Người chia sẻ: Nguyễn Thị Dung
Dung lượng: 362,50KB|
Lượt tài: 0
Loại file: doc
Nguồn : Chưa rõ
(Tài liệu chưa được thẩm định)