Bộ đề thi HSG toan 8 có đáp án
Chia sẻ bởi Biện Long Cận |
Ngày 12/10/2018 |
75
Chia sẻ tài liệu: Bộ đề thi HSG toan 8 có đáp án thuộc Đại số 8
Nội dung tài liệu:
phòng giáo dục và đào tạo kim bảng
kiểm tra chất lượng học sinh giỏi năm học 2008 – 2009
môn toán lớp 8
Thêi gian 150 phót – Kh«ng kÓ thêi gian giao ®Ò
Đề chính thức
Bài 1 (3 điểm)Tính giá trị biểu thức
Bài 2 (4 điểm)
a/Với mọi số a, b, c không đồng thời bằng nhau, hãy chứng minh
a2 + b2 + c2 – ab – ac – bc 0
b/ Cho a + b + c = 2009. chứng minh rằng
Bài 3 (4 điểm). Cho a 0, b 0 ; a và b thảo mãn 2a + 3b 6 và 2a + b 4. Tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức A = a2 – 2a – b
Bài 4 (3 điểm). Giải bài toán bằng cách lập phương trình
Một ô tô đi từ A đến B . Cùng một lúc ô tô thứ hai đi từ B đến A vơí vận tốc bằng vận tốc của ô tô thứ nhất . Sau 5 giờ chúng gặp nhau. Hỏi mỗi ô tô đi cả quãng đường AB thì mất bao lâu?
Bài 5 (6 điểm). Cho tam giác ABC có ba góc nhọn, các điểm M, N thứ tự là trung điểm của BC và AC. Các đường trung trực của BC và AC cắt nhau tại O . Qua A kẻ đường thẳng song song với OM, qua B kẻ đường thẳng song song với ON, chúng cắt nhau tại H
Nối MN, AHB đồng dạng với tam giác nào ?
Gọi G là trọng tâm ABC , chứng minh AHG đồng dạng với MOG ?
Chứng minh ba điểm M , O , G thẳng hàng ?
Phòng GD - ĐT đề thi học sinh giỏi năm học 2008 - 2009
Can lộc Môn: Toán lớp 8
Thời gian làm bài 120 phút
Bài 1. Cho biểu thức: A =
a) Rút gọn biểu thức A
b) Tìm x để A -
c) Tìm x để A đạt giá trị nhỏ nhất.
Bài 2: a) Cho a > b > 0 và 2( a2 + b2) = 5ab
Tính giá trị của biểu thức: P =
b) Cho a, b, c là độ dài 3 cạnh của một tam giác. Chứng minh rằng a2 + 2bc > b2 + c2
Bài 3: Giải các phương trình:
a)
b) (12x+7)2(3x+2)(2x+1) = 3
Bài 4: Cho tam giác ABC; Điểm P nằm trong tam giác sao cho , kẻ PH . Gọi D là trung điểm của cạnh BC. Chứng minh.
a) BP.KP = CP.HP
b) DK = DH
Bài 5: Cho hình bình hành ABCD, một đường thẳng d cắt các cạnh AB, AD tại M và K, cắt đường chéo AC tại G. Chứng minh rằng:
UBND THàNH PHố Huế kỳ thi CHọN học sinh giỏi tHàNH PHố
PHòNG Giáo dục và đào tạo lớp 8 thCS - năm học 2007 - 2008
Môn : Toán
Đề chính thức Thời gian làm bài: 120 phút
Bài 1: (2 điểm)
Phân tích đa thức sau đây thành nhân tử:
Bài 2: (2điểm)
Giải phương trình:
Bài 3: (2điểm)
Căn bậc hai của 64 có thể viết dưới dạng như sau:
Hỏi có tồn tại hay không các số có hai chữ số
kiểm tra chất lượng học sinh giỏi năm học 2008 – 2009
môn toán lớp 8
Thêi gian 150 phót – Kh«ng kÓ thêi gian giao ®Ò
Đề chính thức
Bài 1 (3 điểm)Tính giá trị biểu thức
Bài 2 (4 điểm)
a/Với mọi số a, b, c không đồng thời bằng nhau, hãy chứng minh
a2 + b2 + c2 – ab – ac – bc 0
b/ Cho a + b + c = 2009. chứng minh rằng
Bài 3 (4 điểm). Cho a 0, b 0 ; a và b thảo mãn 2a + 3b 6 và 2a + b 4. Tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức A = a2 – 2a – b
Bài 4 (3 điểm). Giải bài toán bằng cách lập phương trình
Một ô tô đi từ A đến B . Cùng một lúc ô tô thứ hai đi từ B đến A vơí vận tốc bằng vận tốc của ô tô thứ nhất . Sau 5 giờ chúng gặp nhau. Hỏi mỗi ô tô đi cả quãng đường AB thì mất bao lâu?
Bài 5 (6 điểm). Cho tam giác ABC có ba góc nhọn, các điểm M, N thứ tự là trung điểm của BC và AC. Các đường trung trực của BC và AC cắt nhau tại O . Qua A kẻ đường thẳng song song với OM, qua B kẻ đường thẳng song song với ON, chúng cắt nhau tại H
Nối MN, AHB đồng dạng với tam giác nào ?
Gọi G là trọng tâm ABC , chứng minh AHG đồng dạng với MOG ?
Chứng minh ba điểm M , O , G thẳng hàng ?
Phòng GD - ĐT đề thi học sinh giỏi năm học 2008 - 2009
Can lộc Môn: Toán lớp 8
Thời gian làm bài 120 phút
Bài 1. Cho biểu thức: A =
a) Rút gọn biểu thức A
b) Tìm x để A -
c) Tìm x để A đạt giá trị nhỏ nhất.
Bài 2: a) Cho a > b > 0 và 2( a2 + b2) = 5ab
Tính giá trị của biểu thức: P =
b) Cho a, b, c là độ dài 3 cạnh của một tam giác. Chứng minh rằng a2 + 2bc > b2 + c2
Bài 3: Giải các phương trình:
a)
b) (12x+7)2(3x+2)(2x+1) = 3
Bài 4: Cho tam giác ABC; Điểm P nằm trong tam giác sao cho , kẻ PH . Gọi D là trung điểm của cạnh BC. Chứng minh.
a) BP.KP = CP.HP
b) DK = DH
Bài 5: Cho hình bình hành ABCD, một đường thẳng d cắt các cạnh AB, AD tại M và K, cắt đường chéo AC tại G. Chứng minh rằng:
UBND THàNH PHố Huế kỳ thi CHọN học sinh giỏi tHàNH PHố
PHòNG Giáo dục và đào tạo lớp 8 thCS - năm học 2007 - 2008
Môn : Toán
Đề chính thức Thời gian làm bài: 120 phút
Bài 1: (2 điểm)
Phân tích đa thức sau đây thành nhân tử:
Bài 2: (2điểm)
Giải phương trình:
Bài 3: (2điểm)
Căn bậc hai của 64 có thể viết dưới dạng như sau:
Hỏi có tồn tại hay không các số có hai chữ số
* Một số tài liệu cũ có thể bị lỗi font khi hiển thị do dùng bộ mã không phải Unikey ...
Người chia sẻ: Biện Long Cận
Dung lượng: 1,79MB|
Lượt tài: 4
Loại file: doc
Nguồn : Chưa rõ
(Tài liệu chưa được thẩm định)