BDHG Toán 8
Chia sẻ bởi Phạm Xuân Bình |
Ngày 12/10/2018 |
54
Chia sẻ tài liệu: BDHG Toán 8 thuộc Đại số 8
Nội dung tài liệu:
Chuyên đề 2
Biến đổi biểu thức đại số
a – biển đổi biểu thức nguyên
I. Một số hằng đẳng thức cơ bản
(a ( b)2 = a2 ( 2ab + b2 ;
(a + b + c)2 = a2 + b2 + c2 + 2ab + 2bc + 2ca ;
= ;
(a ( b)3 = a3 ( 3a2b + 3ab2 ( b3 = a3 ( b3 ( 3ab(a ( b);
(a ( b)4 = a4 ( 4a3b + 6a2b2 ( 4ab3 + b4 ;
a2 – b2 = (a – b)(a + b) ;
a3 – b3 = (a – b)(a2 + ab + b2) ;
an – bn = (a – b)(an – 1 + an – 2b + an – 3b2 + … + abn – 2 + bn – 1) ;
a3 + b3 = (a + b)(a2 – ab + b2)
a5 + b5 = (a + b)(a4 – a3b + a2b2 – ab3 + b5) ;
a2k + 1 + b2k + 1 = (a + b)(a2k – a2k – 1b + a2k – 2b2 – … + a2b2k – 2 – ab2k – 1 + b2k) ;
II. Bảng các hệ số trong khai triển (a + b)n – Tam giác Pascal
Đỉnh
1
Dòng 1 (n = 1)
1
1
Dòng 2 (n = 2)
1
2
1
Dòng 3 (n = 3)
1
3
3
1
Dòng 4 (n = 4)
1
4
6
4
1
Dòng 5 (n = 5)
1
5
10
10
5
1
Trong tam giác này, hai cạnh bên gồm các số 1 ; dòng k + 1 được thành lập từ dòng k (k ≥ 1), chẳng hạn ở dòng 2 ta có 2 = 1 + 1, ở dòng 3 ta có 3 = 2 + 1, 3 = 1 + 2, ở dòng 4 ta có 4 = 1 + 3, 6 = 3 + 3, 4 = 3 + 1, …Khai triển (x + y)n thành tổng thì các hệ số của các hạng tử là các số trong dòng thứ n của bảng trên. Người ta gọi bảng trên là tam giác Pascal, nó thường được sử dụng khi n không quá lớn. Chẳng hạn, với n = 4 thì :
(a + b)4 = a4 + 4a3b + 6a2b2 + 4ab3 + b4
và với n = 5 thì :
(a + b)5 = a5 + 5a4b + 10a3b2 + 10a2b3 + 10ab4 + b5
II. Các ví dụ
Ví dụ 1. Đơn giản biểu thức sau :
A = (x + y + z)3 – (x + y – z)3 – (y + z – x)3 – (z + x – y)3.
Lời giải
A = [(x + y) + z]3 – [(x + y) – z]3 – [z – (x – y)]3 – [z + (x – y)]3
= [(x + y)3 + 3(x + y)2z + 3(x + y)z2 + z3] – [(x + y)3 – 3(x + y)2z + 3(x + y)z2 – z3] –
– [z3 – 3z2(x – y) + 3z(x – y)2 – (x – y)3] – [z3 + 3z2(x – y) + 3z(x – y)2 + (x – y)3]
= 6(x + y)2z – 6z(x – y)2 = 24xyz
Ví dụ 2. Cho x + y = a, xy = b (a2 ≥ 4b). Tính giá trị của các biểu thức sau :
a) x2 + y2 ; b) x3 + y3 ; c) x4 + y4 ; d) x5 + y5
Lời giải
x2 + y2 = (x + y)2 – 2xy = a2 – 2b
x3 + y3 = (x + y)3 – 3xy(x + y) = a3 – 3ab
x4 +
Biến đổi biểu thức đại số
a – biển đổi biểu thức nguyên
I. Một số hằng đẳng thức cơ bản
(a ( b)2 = a2 ( 2ab + b2 ;
(a + b + c)2 = a2 + b2 + c2 + 2ab + 2bc + 2ca ;
= ;
(a ( b)3 = a3 ( 3a2b + 3ab2 ( b3 = a3 ( b3 ( 3ab(a ( b);
(a ( b)4 = a4 ( 4a3b + 6a2b2 ( 4ab3 + b4 ;
a2 – b2 = (a – b)(a + b) ;
a3 – b3 = (a – b)(a2 + ab + b2) ;
an – bn = (a – b)(an – 1 + an – 2b + an – 3b2 + … + abn – 2 + bn – 1) ;
a3 + b3 = (a + b)(a2 – ab + b2)
a5 + b5 = (a + b)(a4 – a3b + a2b2 – ab3 + b5) ;
a2k + 1 + b2k + 1 = (a + b)(a2k – a2k – 1b + a2k – 2b2 – … + a2b2k – 2 – ab2k – 1 + b2k) ;
II. Bảng các hệ số trong khai triển (a + b)n – Tam giác Pascal
Đỉnh
1
Dòng 1 (n = 1)
1
1
Dòng 2 (n = 2)
1
2
1
Dòng 3 (n = 3)
1
3
3
1
Dòng 4 (n = 4)
1
4
6
4
1
Dòng 5 (n = 5)
1
5
10
10
5
1
Trong tam giác này, hai cạnh bên gồm các số 1 ; dòng k + 1 được thành lập từ dòng k (k ≥ 1), chẳng hạn ở dòng 2 ta có 2 = 1 + 1, ở dòng 3 ta có 3 = 2 + 1, 3 = 1 + 2, ở dòng 4 ta có 4 = 1 + 3, 6 = 3 + 3, 4 = 3 + 1, …Khai triển (x + y)n thành tổng thì các hệ số của các hạng tử là các số trong dòng thứ n của bảng trên. Người ta gọi bảng trên là tam giác Pascal, nó thường được sử dụng khi n không quá lớn. Chẳng hạn, với n = 4 thì :
(a + b)4 = a4 + 4a3b + 6a2b2 + 4ab3 + b4
và với n = 5 thì :
(a + b)5 = a5 + 5a4b + 10a3b2 + 10a2b3 + 10ab4 + b5
II. Các ví dụ
Ví dụ 1. Đơn giản biểu thức sau :
A = (x + y + z)3 – (x + y – z)3 – (y + z – x)3 – (z + x – y)3.
Lời giải
A = [(x + y) + z]3 – [(x + y) – z]3 – [z – (x – y)]3 – [z + (x – y)]3
= [(x + y)3 + 3(x + y)2z + 3(x + y)z2 + z3] – [(x + y)3 – 3(x + y)2z + 3(x + y)z2 – z3] –
– [z3 – 3z2(x – y) + 3z(x – y)2 – (x – y)3] – [z3 + 3z2(x – y) + 3z(x – y)2 + (x – y)3]
= 6(x + y)2z – 6z(x – y)2 = 24xyz
Ví dụ 2. Cho x + y = a, xy = b (a2 ≥ 4b). Tính giá trị của các biểu thức sau :
a) x2 + y2 ; b) x3 + y3 ; c) x4 + y4 ; d) x5 + y5
Lời giải
x2 + y2 = (x + y)2 – 2xy = a2 – 2b
x3 + y3 = (x + y)3 – 3xy(x + y) = a3 – 3ab
x4 +
* Một số tài liệu cũ có thể bị lỗi font khi hiển thị do dùng bộ mã không phải Unikey ...
Người chia sẻ: Phạm Xuân Bình
Dung lượng: 452,50KB|
Lượt tài: 3
Loại file: doc
Nguồn : Chưa rõ
(Tài liệu chưa được thẩm định)