Bài toán liên quan đến điều kiện chia hết

Chia sẻ bởi Nguyễn Thị Quỳnh | Ngày 09/10/2018 | 24

Chia sẻ tài liệu: bài toán liên quan đến điều kiện chia hết thuộc Toán học 5

Nội dung tài liệu:

Bài toán liên quan đến điều kiện chia hết
* BÀI TẬP VẬN DỤNG:
1. Loại toán viết số tự nhiên theo dấu hiệu chia hết  
Bài 1: Hãy thiết lập các số có 3 chữ số khác nhau từ 4 chữ số 0, 4, 5, 9 thoả mãn điều kiện
a, Chia hết cho 2
b, Chia hết cho 4
c, Chia hết cho 2 và 5
Giải:
a, Các số chia hết cho 2 có tận cùng bằng 0 hoặc 4. Mặt khác mỗi số đều có các chữ số khác nhau, nên các số thiết lập được là
540; 504
940; 904
450; 954
950; 594
490
590
b, Ta có các số có 3 chữ số chia hết cho 4 được viết từ 4 chữ số đã cho là:
540; 504; 940; 904
c, Số chia hết cho 2 và 5 phải có tận cùng 0. Vậy các số cần tìm là 
540; 450; 490
940; 950; 590.
Bài 2: Với các chữ số 1, 2, 3, 4, 5 ta lập được bao nhiêu số có 4 chữ số chia hết cho 5?
Giải:
Một số chia hết cho 5 khi tận cùng là 0 hoặc 5.
Với các số 1, 2, 3, 4, ta viết được 4 x 4 x 4 = 64 số có 3 chữ số 
Vậy với các số 1, 2, 3, 4, 5 ta viết được 64 số có 5 chữ số (Có tận cùng là 5)
2. Loại toán dùng dấu hiệu chia hết để điền vào chữ số chưa biết
Ở dạng này:
- Nếu số phải tìm chia hết cho 2 hoặc 5 thì trước hết dựa vào dấu hiệu chia hết để xác định chữ số tận cùng.
- Dùng phương pháp thử chọn kết hợp với các dấu hiệu chia hết còn lại của số phải tìm để xác định các chữ số còn lại.
Bài 3: Thay x và y vào 1996 xy để được số chia hết cho 2, 5, 9.
Giải:
Số phải tìm chia hết cho 5 vậy y phải bằng 0 hoặc 5.
Số phải tìm chia hết cho 2 nên y phải là số chẵn 
Từ đó suy ra y = 0. Số phải tìm có dạng 1996 x 0.
Số phải tìm chia hết cho 9 vậy (1 +9 + 9+ 6 + x )chia hết cho 9 hay (25 + x) chia hết cho 9. Suy ra x = 2.
Số phải tìm là: 199620.
Bài 4: Cho n = a 378 b là số tự nhiên có 5 chữ số khác nhau. Tìm tất cả các chữ số a và b để thay vào ta dược số n chia hết cho 3 và 4.
Giải:
- n chia hết cho 4 thì 8b phải chia hết cho 4. Vậy b = 0, 4 hoặc 8
- n có 5 chữ số khác nhau nên b = 0 hoặc 4
- Thay b = 0 thì n = a3780
+ Số a3780 chia hết cho 3 thì a = 3, 6 hoặc 9
+ Số n có 5 chữ số khác nhau nên a = 6 hoặc 9
Ta được các số 63 780 và 930780 thoả mãn điều kiện của đề bài
- Thay b = 4 thì n = a3784
+ Số a3784 chia hết cho 3 thì a = 2, 5 hoặc 8
+ Số n có 5 chữ số khác nhau nên a = 2 hoặc 5. Ta được các số 23784 và 53 784 thoả mãn điều kiện đề bài
Các số phải tìm 63 780; 93 780; 23 784; 53 784.
3. Các bài toán về vận dụng tính chất chia hết của một tổng và một hiệu
Các tính chất thường sử dụng trong loại này là:
- Nếu mỗi số hạng của tổng đều chia hết cho 2 thì tổng của chúng cũng chia hết cho 2
- Nếu SBT và ST đều chia hết cho 2 thì hiệu của chúng cũng chia hết cho 2
- Một số hạng không chia hết cho 2, các số hạng còn lại chia hết cho 2 thì tổng không chia hết cho 2
- Hiệu của 1 số chia hết cho 2 và 1 số không chia hết cho 2 là 1 số không chia hết cho 2.
(Tính chất này tương tự đối với các trường hợp chia hết khác)
Bài 5: Không làm phép tính xét xem các tổng và hiệu dưới đây có chia hết cho 3 hay không.
a. 459 + 690 1 236
b. 2 454 - 374
Giải:
a. 459, 690, 1 236 đều là số chia hết cho 3 nên 459 + 690 + 1 236 chia hết cho 3
b. 2 454 chia hết cho 3 và 374 không chia hết cho 3 nên 2 454 - 374 không chia hết cho 3.
Bài 6: Tổng kết năm học 2001- 2002 một trường tiểu học có 462 học sinh tiên tiến và 195
* Một số tài liệu cũ có thể bị lỗi font khi hiển thị do dùng bộ mã không phải Unikey ...

Người chia sẻ: Nguyễn Thị Quỳnh
Dung lượng: 37,00KB| Lượt tài: 0
Loại file: doc
Nguồn : Chưa rõ
(Tài liệu chưa được thẩm định)