BÀI TẬP VỀ NHÀ VỀ TAM GIÁC BẰNG NHAU,TAM GIÁC CÂN
Chia sẻ bởi Phan Thị Ngọc Quyên |
Ngày 16/10/2018 |
80
Chia sẻ tài liệu: BÀI TẬP VỀ NHÀ VỀ TAM GIÁC BẰNG NHAU,TAM GIÁC CÂN thuộc Hình học 7
Nội dung tài liệu:
BÀI TẬP VỀ NHÀ VỀ TAM GIÁC BẰNG NHAU,TAM GIÁC CÂN
Bài 1: Cho tam giác ABC vuông cân tại A. Trên cùng một nửa mặt phẳng chứa điểm A, bờ là BC vẽ các tia Bx và Cy cùng vuông góc với BC. Lấy M thuộc cạnh BC ( M khác A và B); đường thẳng vuông góc với AM tại A cắt Bx, Cy lần lượt tại H và K.
a, Chứng minh: BM = CK
b, Chứng minh A là trung điểm của HK
c, Gọi P là giao điểm của AB và MN, Q là giao điểm của AC và MK.
Chứng minh: PQ song song với BC.
Bài 2: Cho tam giác ABC vuông cân tại A, M là trung điểm BC. Lấy điểm D bất kì
thuộc cạnh BC. H và I thứ tự là hình chiếu của B và C xuống đường thẳng AD. Đường
thẳng AM cắt CI tại N. Chứng minh rằng:
a) BH = AI.
b) BH2 + CI2 có giá trị không đổi.
c) Đường thẳng DN vuông góc với AC.
d) IM là phân giác của góc HIC.
Bài 3: Cho tam giác ABC cân tại A. Lấy điểm D trên cạnh BC, trên tia đối của tia CB lấy điểm E sao cho CE=BD. Các đường thẳng vuông góc với BC tại D và E lần lượt cắt các đường thẳng AB và AC theo thứ tự tại M, N. Gọi I là giao điểm của MN với BC.
a/ Chứng minh rằng I là trung điểm của MN.
b/ Chứng minh rằng đường thẳng vuông góc với MN tại I luôn đi qua một điểm cố định.
Bài 4: Cho tam giác ABC vuông tại A; K là trung điểm của BC. Trên tia đối của tia KA lấy D , sao cho KD = KA.
a) Chứng minh: CD // AB.
b) Gọi H là trung điểm của AC; BH cắt AD tại M; DH cắt BC tại N .
Chứng minh: HMN cân.
c) Chứng minh rằng KH là tia phân giác góc AKC
Bài 5. Cho tam giác ABC cân tại A (). Kẻ phân giác BD (). Trên tia AB lấy điểm M sao cho AM = BC.
Chứng minh BD + AD = BC
Tính
Bài 6: Cho tam giác ABC cân tại A. Trên cạnh AB lấy điểm M, trên tia đối của tia CA lấy điểm N sao cho .
Chứng minh rằng: .
Chứng minh rằng: BC đi qua trung điểm của đoạn thẳng MN.
Đường trung trực của đoạn thẳng MN và tia phân giác của góc BAC cắt nhau tại K. Chứng minh .
Bài 7: Cho tam giác ABC ( AB AC). Đường trung trực của đoạn BC tai H cắt tia phân giác Ax của góc A tại K. Kẻ KE, KF theo thứ tự vuông góc với AB và AC
a) Chứng minh rằng BE = CF
b) Nối EF cắt BC tại M. Chứng minh rằng M là trung điểm của BC
Bài 8 Cho =600 có tia phân giác Az . Từ điểm B trên Ax kẻ BH vuông góc với Ay tại H, kẻ BK vuông góc với Az và Bt song song với Ay, Bt cắt Az tại C. Từ C kẻ CM
vuông góc với Ay tại M . Chứng minh :
a ) K là trung điểm của AC.
b ) KMC là tam giác đều.
c) Cho BK = 2cm. Tính các cạnh AKM.
Bài 9:Cho tam giác ABC ,trung tuyến AM .Gọi I là trung điểm của đoạn thẳng AM, BI cắt cạnh AC tại D.
a. Chứng minh AC=3 AD
b. Chứng minh ID =1/4BD
Bài 10: Cho tam giác ABC có góc B và góc C nhỏ hơn 900 . Vẽ ra phía ngoài tam giác ấy các tam giác vuông cân ABD và ACE ( trong đó góc ABD và góc ACE đều bằng 900 ), vẽ DI và EK cùng vuông góc với đường thẳng BC. Chứng minh rằng:
a. BI=CK; EK = HC; b. BC = DI + EK.
Bài 11:Cho M,N lần lượt là trung điểm của các cạnh AB và AC của tam giác ABC. Các đường phân giác và phân giác ngoài của tam giác kẻ từ B cắt đường thẳng MN lần lượt tại D và E các tia AD và AE cắt đường thẳng BC theo thứ tự tại P và Q. Chứng minh:
a) BD
b) B là trung điểm của PQ
Bài 12) Cho có > 900. Gọi I là trung điểm của cạnh AC. Trên tia đối của tia IB lấy điểm D sao cho IB = ID. Nối C với D.
a. Chứng minh
b. Gọi M là trung điểm
Bài 1: Cho tam giác ABC vuông cân tại A. Trên cùng một nửa mặt phẳng chứa điểm A, bờ là BC vẽ các tia Bx và Cy cùng vuông góc với BC. Lấy M thuộc cạnh BC ( M khác A và B); đường thẳng vuông góc với AM tại A cắt Bx, Cy lần lượt tại H và K.
a, Chứng minh: BM = CK
b, Chứng minh A là trung điểm của HK
c, Gọi P là giao điểm của AB và MN, Q là giao điểm của AC và MK.
Chứng minh: PQ song song với BC.
Bài 2: Cho tam giác ABC vuông cân tại A, M là trung điểm BC. Lấy điểm D bất kì
thuộc cạnh BC. H và I thứ tự là hình chiếu của B và C xuống đường thẳng AD. Đường
thẳng AM cắt CI tại N. Chứng minh rằng:
a) BH = AI.
b) BH2 + CI2 có giá trị không đổi.
c) Đường thẳng DN vuông góc với AC.
d) IM là phân giác của góc HIC.
Bài 3: Cho tam giác ABC cân tại A. Lấy điểm D trên cạnh BC, trên tia đối của tia CB lấy điểm E sao cho CE=BD. Các đường thẳng vuông góc với BC tại D và E lần lượt cắt các đường thẳng AB và AC theo thứ tự tại M, N. Gọi I là giao điểm của MN với BC.
a/ Chứng minh rằng I là trung điểm của MN.
b/ Chứng minh rằng đường thẳng vuông góc với MN tại I luôn đi qua một điểm cố định.
Bài 4: Cho tam giác ABC vuông tại A; K là trung điểm của BC. Trên tia đối của tia KA lấy D , sao cho KD = KA.
a) Chứng minh: CD // AB.
b) Gọi H là trung điểm của AC; BH cắt AD tại M; DH cắt BC tại N .
Chứng minh: HMN cân.
c) Chứng minh rằng KH là tia phân giác góc AKC
Bài 5. Cho tam giác ABC cân tại A (). Kẻ phân giác BD (). Trên tia AB lấy điểm M sao cho AM = BC.
Chứng minh BD + AD = BC
Tính
Bài 6: Cho tam giác ABC cân tại A. Trên cạnh AB lấy điểm M, trên tia đối của tia CA lấy điểm N sao cho .
Chứng minh rằng: .
Chứng minh rằng: BC đi qua trung điểm của đoạn thẳng MN.
Đường trung trực của đoạn thẳng MN và tia phân giác của góc BAC cắt nhau tại K. Chứng minh .
Bài 7: Cho tam giác ABC ( AB AC). Đường trung trực của đoạn BC tai H cắt tia phân giác Ax của góc A tại K. Kẻ KE, KF theo thứ tự vuông góc với AB và AC
a) Chứng minh rằng BE = CF
b) Nối EF cắt BC tại M. Chứng minh rằng M là trung điểm của BC
Bài 8 Cho =600 có tia phân giác Az . Từ điểm B trên Ax kẻ BH vuông góc với Ay tại H, kẻ BK vuông góc với Az và Bt song song với Ay, Bt cắt Az tại C. Từ C kẻ CM
vuông góc với Ay tại M . Chứng minh :
a ) K là trung điểm của AC.
b ) KMC là tam giác đều.
c) Cho BK = 2cm. Tính các cạnh AKM.
Bài 9:Cho tam giác ABC ,trung tuyến AM .Gọi I là trung điểm của đoạn thẳng AM, BI cắt cạnh AC tại D.
a. Chứng minh AC=3 AD
b. Chứng minh ID =1/4BD
Bài 10: Cho tam giác ABC có góc B và góc C nhỏ hơn 900 . Vẽ ra phía ngoài tam giác ấy các tam giác vuông cân ABD và ACE ( trong đó góc ABD và góc ACE đều bằng 900 ), vẽ DI và EK cùng vuông góc với đường thẳng BC. Chứng minh rằng:
a. BI=CK; EK = HC; b. BC = DI + EK.
Bài 11:Cho M,N lần lượt là trung điểm của các cạnh AB và AC của tam giác ABC. Các đường phân giác và phân giác ngoài của tam giác kẻ từ B cắt đường thẳng MN lần lượt tại D và E các tia AD và AE cắt đường thẳng BC theo thứ tự tại P và Q. Chứng minh:
a) BD
b) B là trung điểm của PQ
Bài 12) Cho có > 900. Gọi I là trung điểm của cạnh AC. Trên tia đối của tia IB lấy điểm D sao cho IB = ID. Nối C với D.
a. Chứng minh
b. Gọi M là trung điểm
* Một số tài liệu cũ có thể bị lỗi font khi hiển thị do dùng bộ mã không phải Unikey ...
Người chia sẻ: Phan Thị Ngọc Quyên
Dung lượng: 179,00KB|
Lượt tài: 1
Loại file: doc
Nguồn : Chưa rõ
(Tài liệu chưa được thẩm định)