48 DE THI HSG LOP 8
Chia sẻ bởi Nguyễn Thiên Hương |
Ngày 12/10/2018 |
152
Chia sẻ tài liệu: 48 DE THI HSG LOP 8 thuộc Đại số 8
Nội dung tài liệu:
ĐỀ SỐ 1
Câu 1: Cho x = ; y = . Tính giá trị P = x + y + xy
Câu 2: Giải phương trình: a, = ++ (x là ẩn số);
b, + + = 0; (a,b,c là hằng số và đôi một khác nhau)
Câu 3: Xác định các số a, b biết: = +
Câu 4: Chứng minh phương trình: 2x2 – 4y = 10 không có nghiệm nguyên.
Câu 5: Cho ABC; AB = 3AC. Tính tỷ số đường cao xuất phát từ B và C
ĐỀ SỐ 2
Câu 1: Cho a,b,c thoả mãn: = = .Tính giá trị M = (1 +)(1 +)(1 + )
Câu 2: Xác định a, b để đa thức f(x) = 6x4 – 7x3 + ax2 + 3x +2 Chia hết cho y(x) = x2 – x + b
Câu 3: Giải các PT: a, (x-4) (x-5) (x-6) (x-7) = 1680. b, 4x2 + 4y – 4xy +5y2 + 1 = 0
Câu 4: Tìm giá trị lớn nhất của phân số mà tử số là một số có 3 chữ số mà mẫu là tổng các chữ số của nó.
Câu 5: Cho ABC cân tại A, trên AB lấy D, trên AC lấy E sao cho:AD = EC = DE = CB.
a, Nếu AB> 2BC. Tính góc của
b, Nếu AB < BC. Tính góc của .
ĐỀ SỐ 3
Câu 1:Phân tích thành nhân tử: a, a3 + b3 + c3 – 3abc; b, (x-y)3 +(y-z)3 + (z-x)3
Câu 2: Cho A = :
a, Rút gọn A
b, Tìm A khi x= -
c, Tìm x để 2A = 1
Câu 3: a, Cho x+y+z = 3. Tìm giá trị nhỏ nhất của M = x2 + y2 + z2
b, Tìm giá trị lớn nhất của P =
Câu 4: a, Cho a,b,c > 0, CMR: 1 < ++< 2; b, Cho x,y 0 CMR: + +
Câu 5: Cho đều có độ dài cạnh là a, kéo dài BC một đoạn CM =a
a, Tính số đo các góc
b, CMR: AM AB
c, Kéo dài CA đoạn AN = a, kéo dài AB đoạn BP = a. CMR đều.
ĐỀ SỐ 4
Câu 1: Phân tích thành nhân tử: a, a8 + a4 +1; b, a10 + a5 +1
Câu 2: a, Cho a+b+c = 0, Tính giá trị của biểu thức: A = + +
b, Cho biểu thức: M =
+ Rút gọn M
+ Tìm x Z để M đạt giá trị nguyên.
Câu 3: a, Cho abc = 1 và a3 > 36, CMR: + b2 + c2 > ab + bc + ca; b, CMR: a2 + b2 +1 ab + a + b
Câu 4: a, Tìm giá trị nhỏ nhất của A = 2x2 + 2xy + y2 - 2x + 2y +1
b, Cho a+b+c= 1, Tìm giá trị nhỏ nhất P = a3 + b3 + c3 + a2(b+c) + b2(c+a) + c2(a+b)
Câu 5: a, Tìm x,y,x Z biết: x2 + 2y2 + z2 - 2xy – 2y + 2z +2 = 0
b, Tìm nghiệm nguyên của PT: 6x + 15y + 10z = 3
Câu 6: Cho . H là trực tâm, đường thẳng vuông góc với AB tại B, với AC tại C cắt nhau tại D.
a, CMR: Tứ giác BDCH là hình bình hành.
b, Nhận xét mối quan hệ giữa góc và của tứ giác ABDC.
ĐỀ SỐ 5
Câu 1: Phân tích thành nhân tử: a, (x2 – x +2)2 + (x-2)2 ; b, 6x5 +15x4 + 20x3 +15x2 + 6x +1
Câu 2: a, Cho a, b, c thoả mãn: a+b+c = 0 và a2 + b2 + c2= 14. Tính giá trị của A = a4+ b4+ c4
b, Cho a, b, c 0. Tính giá trị của D = x2009 + y2010 + z2011
Biết x,y,z thoả mãn: = ++
Câu 1: Cho x = ; y = . Tính giá trị P = x + y + xy
Câu 2: Giải phương trình: a, = ++ (x là ẩn số);
b, + + = 0; (a,b,c là hằng số và đôi một khác nhau)
Câu 3: Xác định các số a, b biết: = +
Câu 4: Chứng minh phương trình: 2x2 – 4y = 10 không có nghiệm nguyên.
Câu 5: Cho ABC; AB = 3AC. Tính tỷ số đường cao xuất phát từ B và C
ĐỀ SỐ 2
Câu 1: Cho a,b,c thoả mãn: = = .Tính giá trị M = (1 +)(1 +)(1 + )
Câu 2: Xác định a, b để đa thức f(x) = 6x4 – 7x3 + ax2 + 3x +2 Chia hết cho y(x) = x2 – x + b
Câu 3: Giải các PT: a, (x-4) (x-5) (x-6) (x-7) = 1680. b, 4x2 + 4y – 4xy +5y2 + 1 = 0
Câu 4: Tìm giá trị lớn nhất của phân số mà tử số là một số có 3 chữ số mà mẫu là tổng các chữ số của nó.
Câu 5: Cho ABC cân tại A, trên AB lấy D, trên AC lấy E sao cho:AD = EC = DE = CB.
a, Nếu AB> 2BC. Tính góc của
b, Nếu AB < BC. Tính góc của .
ĐỀ SỐ 3
Câu 1:Phân tích thành nhân tử: a, a3 + b3 + c3 – 3abc; b, (x-y)3 +(y-z)3 + (z-x)3
Câu 2: Cho A = :
a, Rút gọn A
b, Tìm A khi x= -
c, Tìm x để 2A = 1
Câu 3: a, Cho x+y+z = 3. Tìm giá trị nhỏ nhất của M = x2 + y2 + z2
b, Tìm giá trị lớn nhất của P =
Câu 4: a, Cho a,b,c > 0, CMR: 1 < ++< 2; b, Cho x,y 0 CMR: + +
Câu 5: Cho đều có độ dài cạnh là a, kéo dài BC một đoạn CM =a
a, Tính số đo các góc
b, CMR: AM AB
c, Kéo dài CA đoạn AN = a, kéo dài AB đoạn BP = a. CMR đều.
ĐỀ SỐ 4
Câu 1: Phân tích thành nhân tử: a, a8 + a4 +1; b, a10 + a5 +1
Câu 2: a, Cho a+b+c = 0, Tính giá trị của biểu thức: A = + +
b, Cho biểu thức: M =
+ Rút gọn M
+ Tìm x Z để M đạt giá trị nguyên.
Câu 3: a, Cho abc = 1 và a3 > 36, CMR: + b2 + c2 > ab + bc + ca; b, CMR: a2 + b2 +1 ab + a + b
Câu 4: a, Tìm giá trị nhỏ nhất của A = 2x2 + 2xy + y2 - 2x + 2y +1
b, Cho a+b+c= 1, Tìm giá trị nhỏ nhất P = a3 + b3 + c3 + a2(b+c) + b2(c+a) + c2(a+b)
Câu 5: a, Tìm x,y,x Z biết: x2 + 2y2 + z2 - 2xy – 2y + 2z +2 = 0
b, Tìm nghiệm nguyên của PT: 6x + 15y + 10z = 3
Câu 6: Cho . H là trực tâm, đường thẳng vuông góc với AB tại B, với AC tại C cắt nhau tại D.
a, CMR: Tứ giác BDCH là hình bình hành.
b, Nhận xét mối quan hệ giữa góc và của tứ giác ABDC.
ĐỀ SỐ 5
Câu 1: Phân tích thành nhân tử: a, (x2 – x +2)2 + (x-2)2 ; b, 6x5 +15x4 + 20x3 +15x2 + 6x +1
Câu 2: a, Cho a, b, c thoả mãn: a+b+c = 0 và a2 + b2 + c2= 14. Tính giá trị của A = a4+ b4+ c4
b, Cho a, b, c 0. Tính giá trị của D = x2009 + y2010 + z2011
Biết x,y,z thoả mãn: = ++
* Một số tài liệu cũ có thể bị lỗi font khi hiển thị do dùng bộ mã không phải Unikey ...
Người chia sẻ: Nguyễn Thiên Hương
Dung lượng: 185,49KB|
Lượt tài: 1
Loại file: rar
Nguồn : Chưa rõ
(Tài liệu chưa được thẩm định)