25 đề thi vào lớp 10
Chia sẻ bởi Vũ Thái Bình |
Ngày 12/10/2018 |
42
Chia sẻ tài liệu: 25 đề thi vào lớp 10 thuộc Ngữ văn 9
Nội dung tài liệu:
ĐỀ 1
bài 1(2 điểm):
Cho hệ phơng trình: (x, y là ẩn, a là tham số)
1. Giải hệ phơng trình trên.
2. Tìm số nguyên a lớn nhất để hệ phơng trình có nghiệm (x0,y0) thoả mãn bất đẳng thức x0y0 < 0.
bài 2(1,5 điểm):
Lập phơng trình bậc hai với hệ số nguyên có 2 nghiệm là:
Tính:
bài 3(2 điểm):
Tìm m để phơng trình: , có đúng 2 nghiệm phân biệt.
bài 4(1 điểm):
Giả sử x và y là các số thoả mãn đẳng thức:
Tính giá trị của biểu thức: M = x+y.
bài 5(3,5 điểm):
Cho tứ giác ABCD có AB=AD và CB=CD.
Chứng minh rằng:
1. Tứ giác ABCD ngoại tiếp đợc một đờng tròn.
2. Tứ giác ABCD nội tiếp đợc trong một đờng tròn khi và chỉ khi AB và BC vuông góc với nhau.
3. Giả sử . Gọi (N,r) là đờng tròn nội tiếp và (M,R) là đờng tròn ngoại tiếp tứ giác ABCD.Chứng minh:
ĐỀ 2
bài 1(2 diểm):
Tìm a và b thoả mãn đẳng thức sau:
bài 2(1,5 điểm):
Tìm các số hữu tỉ a, b, c đôi một khác nhau sao cho biểu thức:
nhận giá trị cũng là số hữu tỉ.
bài 3(1,5 điểm):
Giả sử a và b là 2 số dơng cho trớc. Tìm nghiệm dơng của phơng trình:
bài 4(2 điểm):
Gọi A, B, C là các góc của tam giác ABC. Tìm điều kiện của tam giác ABC để biểu thức:
đạt giá trị lớn nhất. Tìm giá trị lớn nhất ấy?
bài 5(3 điểm):
Cho hình vuông ABCD.
1.Với mỗi một điểm M cho trớc trên cạnh AB ( khác với điểm A và B), tìm trên cạnh AD điểm N sao cho chu vi của tam giác AMN gấp hai lần độ dài cạnh hình vuông đã cho.
2. Kẻ 9 đờng thẳng sao cho mỗi đờng thẳng này chia hình vuông đã cho thành 2 tứ giác có tý số diện tích bằng 2/3. Chứng minh rằng trong 9 đòng thẳng nói trên có ít nhất 3 đờng thẳng đồng quy.
ĐỀ 3
bài 1(2 điểm):
1. Chứng minh rằng với mọi giá trị dơng của n, kuôn có:
2. Tính tổng:
bài 2(1,5 điểm):
Tìm trên đòng thẳng y=x+1 những điểm có toạ độ thoả mãn đẳng thức:
bài 3(1,5 điểm):
Cho hai phơng trình sau:
x2-(2m-3)x+6=0
2x2+x+m-5=0
Tìm m để hai phơng trình đã cho có đúng một nghiệm chung.
bài 4(4 điểm):
Cho đờng tròn (O,R) với hai đờng kính AB và MN. Tiếp tuyến với đờng tròn (O) tại A cắt các đờng thẳng BM và BN tong ứng tại M1 và N1. Gọi P là trung điểm của AM1, Q là trung điểm của AN1.
1. Chứng minh tứ giác MM1N1N nội tiếp đợc trong một đờng tròn.
2. Nếu M1N1=4R thì tứ giác PMNQ là hình gì? Chứng minh.
3. Đờng kính AB cố định, tìm tập hợp
bài 1(2 điểm):
Cho hệ phơng trình: (x, y là ẩn, a là tham số)
1. Giải hệ phơng trình trên.
2. Tìm số nguyên a lớn nhất để hệ phơng trình có nghiệm (x0,y0) thoả mãn bất đẳng thức x0y0 < 0.
bài 2(1,5 điểm):
Lập phơng trình bậc hai với hệ số nguyên có 2 nghiệm là:
Tính:
bài 3(2 điểm):
Tìm m để phơng trình: , có đúng 2 nghiệm phân biệt.
bài 4(1 điểm):
Giả sử x và y là các số thoả mãn đẳng thức:
Tính giá trị của biểu thức: M = x+y.
bài 5(3,5 điểm):
Cho tứ giác ABCD có AB=AD và CB=CD.
Chứng minh rằng:
1. Tứ giác ABCD ngoại tiếp đợc một đờng tròn.
2. Tứ giác ABCD nội tiếp đợc trong một đờng tròn khi và chỉ khi AB và BC vuông góc với nhau.
3. Giả sử . Gọi (N,r) là đờng tròn nội tiếp và (M,R) là đờng tròn ngoại tiếp tứ giác ABCD.Chứng minh:
ĐỀ 2
bài 1(2 diểm):
Tìm a và b thoả mãn đẳng thức sau:
bài 2(1,5 điểm):
Tìm các số hữu tỉ a, b, c đôi một khác nhau sao cho biểu thức:
nhận giá trị cũng là số hữu tỉ.
bài 3(1,5 điểm):
Giả sử a và b là 2 số dơng cho trớc. Tìm nghiệm dơng của phơng trình:
bài 4(2 điểm):
Gọi A, B, C là các góc của tam giác ABC. Tìm điều kiện của tam giác ABC để biểu thức:
đạt giá trị lớn nhất. Tìm giá trị lớn nhất ấy?
bài 5(3 điểm):
Cho hình vuông ABCD.
1.Với mỗi một điểm M cho trớc trên cạnh AB ( khác với điểm A và B), tìm trên cạnh AD điểm N sao cho chu vi của tam giác AMN gấp hai lần độ dài cạnh hình vuông đã cho.
2. Kẻ 9 đờng thẳng sao cho mỗi đờng thẳng này chia hình vuông đã cho thành 2 tứ giác có tý số diện tích bằng 2/3. Chứng minh rằng trong 9 đòng thẳng nói trên có ít nhất 3 đờng thẳng đồng quy.
ĐỀ 3
bài 1(2 điểm):
1. Chứng minh rằng với mọi giá trị dơng của n, kuôn có:
2. Tính tổng:
bài 2(1,5 điểm):
Tìm trên đòng thẳng y=x+1 những điểm có toạ độ thoả mãn đẳng thức:
bài 3(1,5 điểm):
Cho hai phơng trình sau:
x2-(2m-3)x+6=0
2x2+x+m-5=0
Tìm m để hai phơng trình đã cho có đúng một nghiệm chung.
bài 4(4 điểm):
Cho đờng tròn (O,R) với hai đờng kính AB và MN. Tiếp tuyến với đờng tròn (O) tại A cắt các đờng thẳng BM và BN tong ứng tại M1 và N1. Gọi P là trung điểm của AM1, Q là trung điểm của AN1.
1. Chứng minh tứ giác MM1N1N nội tiếp đợc trong một đờng tròn.
2. Nếu M1N1=4R thì tứ giác PMNQ là hình gì? Chứng minh.
3. Đờng kính AB cố định, tìm tập hợp
* Một số tài liệu cũ có thể bị lỗi font khi hiển thị do dùng bộ mã không phải Unikey ...
Người chia sẻ: Vũ Thái Bình
Dung lượng: 691,50KB|
Lượt tài: 0
Loại file: doc
Nguồn : Chưa rõ
(Tài liệu chưa được thẩm định)