20 bài toán bồi dưỡng HSG lớp 5

Chia sẻ bởi Nguyễn Thị Trung | Ngày 09/10/2018 | 39

Chia sẻ tài liệu: 20 bài toán bồi dưỡng HSG lớp 5 thuộc Toán học 5

Nội dung tài liệu:

Giải 20 Bài toán ồi dưỡng HSG lớp 5 (P. I)
(Số chẵn/lẻ & chữ số tận cùng của một số)
Ngày Xuân – tết, mời các bạn luyện HSG toán lớp 5 tham khảo 1 số bài toán sau

Bài 1: a) Nếu tổng của 2 số tự nhiên là 1 số lẻ, thì tích của chúng có thể là 1 số lẻ được không? b) Nếu tích của 2 số tự nhiên là 1 số lẻ, thì tổng của chúng có thể là 1 số lẻ được không? c) “Tổng” và “hiệu” hai số tự nhiên có thể là số chẵn, và số kia là lẻ được không?
Giải: a) Tổng hai số tự nhiên là một số lẻ, như vậy tổng đó gồm 1 số chẵn và 1 số lẻ, do đó tích của chúng phải là 1 số chẵn (Không thể là một số lẻ được). b) Tích hai số tự nhiên là 1 số lẻ, như vậy tích đó gồm 2 thừa số đều là số lẻ, do đó tổng của chúng phải là 1 số chẵn(Không thể là một số lẻ được). c) Lấy “Tổng” cộng với “hiệu” ta được 2 lần số lớn, tức là được 1 số chẵn. Vậy “tổng” và “hiệu” phải là 2 số cùng chẵn hoặc cùng lẻ (Không thể 1 số là chẵn, số kia là lẻ được). 

Bài 2: Không cần làm tính, kiểm tra kết quả của phép tính sau đây đúng hay sai? a, 1783 + 9789 + 375 + 8001 + 2797 = 22744 b, 1872 + 786 + 3748 + 3718 = 10115. c, 5674 x 163 = 610783
Giải: a, Kết quả trên là sai vì tổng của 5 số lẻ là 1 số lẻ. b, Kết quả trên là sai vì tổng của các số chẵn là 1 số chẵn. c, Kết quả trên là sai vì tích của 1số chẵn với bất kỳ 1 số nào cũng là một số chẵn.

Bài 3: Tìm 4 số tự nhiên liên tiếp có tích bằng 24 024
Giải: Ta thấy trong 4 số tự nhiên liên tiếp thì không có thừa số nào có chữ số tận cùng là 0; 5 vì như thế tích sẽ tận cùng là chữ số 0 (trái với bài toán) Do đó 4 số phải tìm chỉ có thể có chữ số tận cùng liên tiếp là 1, 2, 3, 4 và 6, 7, 8, 9 Ta có: 24 024 > 10 000 = 10 x 10 x 10 x 10 24 024 < 160 000 = 20 x 20 x 20 x 20 Nên tích của 4 số đó là: 11 x 12 x 13 x 14 hoặc 16 x 17 x 18 x 19 Có : 11 x 12 x 13 x 14 = 24 024  16 x 17 x 18 x 19 = 93 024. Vậy 4 số phải tìm là: 11, 12, 13, 14.

Bài 4: Có thể tìm được 2 số tự nhiên sao cho hiệu của chúng nhân với 18 được 1989 không?
Giải: Ta thấy số nào nhân với số chẵn tích cũng là 1 số chẵn. 18 là số chẵn mà 1989 là số lẻ. Vì vậy không thể tìm được 2 số tự nhiên mà hiệu của chúng nhân với 18 được 1989.

Bài 5: Có thể tìm được 1 số tự nhiên nào đó nhân với chính nó rồi trừ đi 2 hay 3 hay 7, 8 lại được 1 số tròn chục hay không.
Giải: Số trừ đi 2, 3 hay 7, 8 là số tròn chục thì phải có chữ số tận cùng là 2, 3 hay 7 hoặc 8. Mà các số tự nhiên nhân với chính nó có các chữ số tận cùng là Do vậy không thể tìm được số tự nhiên như thế 

Do vậy không thể tìm được số tự nhiên như thế.

Bài 6: Có số tự nhiên nào nhân với chính nó được kết quả là một số viết bởi 6 chữ số 1 không?
Giải: Gọi số phải tìm là A (A > 0) Ta có: A x A = 111 111  Vì 1 + 1 +1 + 1+ 1+ 1+ = 6 chia hết cho 3 nên 111 111 chia hết cho 3. Do vậy A chia hết cho 3, mà A chia hết cho 3 nên A x A chia hết cho 9 nhưng 111 111 không chia hết cho 9. Vậy không có số nào như thế.

Bài 7: Về 3 số tự nhiên lien tiếp a, Số 1990 có thể là tích của 3 số tự nhiên liên tiếp được không?
Giải: Tích của 3 số tự nhiên liên tiếp thì chia hết cho 3 vì trong 3 số đó luôn có 1 số chia hết cho 3 nên 1990 không là tích của 3 số tự nhiên liên tiếp vì:
* Một số tài liệu cũ có thể bị lỗi font khi hiển thị do dùng bộ mã không phải Unikey ...

Người chia sẻ: Nguyễn Thị Trung
Dung lượng: 18,46KB| Lượt tài: 0
Loại file: rar
Nguồn : Chưa rõ
(Tài liệu chưa được thẩm định)