Xac suat sinh hoc

Chia sẻ bởi Nguyễn Mai Anh Thư | Ngày 26/04/2019 | 61

Chia sẻ tài liệu: xac suat sinh hoc thuộc Sinh học 11

Nội dung tài liệu:

PHẦN I: MỞ ĐẦU

1. Lý do chọn đề tài.

Toán xác suất là một ngành toán học có nhiều ứng dụng rộng rãi trong nhiều lĩnh vực khoa học, công nghệ, kinh tế…Vì vậy lí thuyết xác suất đã được đưa vào chương trình toán lớp 11 nhằm cung cấp cho học sinh THPT những kiến thức cơ bản về ngành toán học quan trọng này.

Để có thể học tốt toán xác suất học sinh phải nắm vững các khái niệm và các công thức cơ bản của xác suất đồng thời phải biết vận dụng các kiến thức đó để giải quyết các bài toán về tính xác suất . Qua thực tiễn giảng dạy xác suất cho học sinh lớp 11 môn Toán ở trường THPT Đức Hợp tôi nhận thấy: đa số các em chưa hiểu sâu sắc các khái niệm cơ bản như: không gian mẫu, biến cố, biến cố độc lập, biến cố xung khắc, biến cố đối,…các em chỉ biết giải bài toán xác suất trong một số kiểu bài tập quen thuộc, đa số học sinh chưa biết sử dụng linh hoạt các quy tắc cộng, quy tắc nhân xác suất để giải các bài tập về tính xác suất.

Qua nhiều năm đứng trên bục giảng, khi dạy tới chuyên đề này, tôi luôn băn khoăn làm thế nào để cho giờ dạy của mình đạt kết quả cao nhất, các em chủ động trong việc chiếm lĩnh kiến thức.Thầy đóng vai trò là người điều khiến để các em tìm đến đích của lời giải. Chính vì lẽ đó trong hai năm học 2010-2011 và 2011-2012 Tôi đã đầu tư thời gian nghiên cứu Chuyên đề này. Một mặt là giúp học sinh hiểu được bản chất của vấn đề, các em không còn lúng túng trong việc giải các bài toán xác suất, hơn nữa tạo ra cho các em hứng thú trong giải toán nói chung và các bài toán xác suất nói riêng. Mặt khác sau khi nghiên cứu tôi sẽ có một phương pháp giảng dạy có hiệu quả cao hơn trong các giờ lên lớp, trả lời thoả đáng câu hỏi “Vì sao nghĩ và làm như vậy”.

Với mong muốn ấy Tôi chọn đề tài: “ Hướng dẫn học sinh tiếp cận và giải bài toán xác suất ở trường THPT Đức Hợp ”. Nội dung đề tài gồm ba bài toán:
Bài 1: Sử dụng định nghĩa cổ điển của xác suất giải các bài toán tính xác suất.
Bài 2: Sử dụng quy tắc cộng, qui tắc nhân giải các bài toán tính xác suất.
Bài 3: Sử dụng kết hợp các quy tắc xác suất giải các bài toán tính xác suất.


Mặc dù đã tham khảo một số lượng lớn các tài liệu hiện nay để vừa viết, vừa giảng dạy trên lớp để kiểm nghiệm thực tế, song vì thời gian có hạn, rất mong được sự đóng góp của các bạn đồng nghiệp để đề tài này có ý nghĩa thiết thực hơn trong nhà trường. Giúp các em có phương pháp - kỹ năng khi giải các bài toán liên quan đến xác suất trong các kỳ thi cuối cấp, đồng thời bước đầu trang bị cho các em kiến thức về toán cao cấp trong những năm đầu học đại học.

2. Mục đích yêu cầu

-Giúp học sinh nắm vững các khái niệm và các quy tắc cơ bản của xác suất đồng thời phải biết vận dụng các kiến thức đó để giải quyết các bài toán về tính xác suất
- Hưởng ứng phong trào viết sáng kiến kinh nghiệm do ban chuyên môn trường phát động
- Tự học, bồi dưỡng nâng cao chuyên môn nghiệp vụ.
3. Đối tượng, phạm vi nghiên cứu
- Khách thể: Học sinh lớp 11 trường THPT Đức Hợp.
- Đối tượng nghiên cứu: Các khái niệm và các quy tắc tính xác suất, các bài toán tính xác suất.
- Phạm vi nghiên cứu: Các kiến thức cơ bản về xác suất trong chương trình SGK môn toán lớp 11.

4. Nhiệm vụ nghiên cứu.

Hệ thống các kiến thức cơ bản về xác suất bằng sơ đồ tư duy
b) Hướng dẫn học sinh giải các bài toán tính xác suất .

5.Phương pháp nghiên cứu

Kết hợp hợp lý các phương pháp dạy học tích cực
Đánh giá trình độ nhận thức, kỹ năng giải toán của học sinh.
Tổng kết kinh nghiệm, tìm ra những khó khăn, thuận lợi khi giải quyết các bài toán.

PHẦN II: NỘI DUNG
Bài toán 1: SỬ DỤNG ĐỊNH NGHĨA CỔ ĐIỂN CỦA XÁC SUẤT GIẢI CÁC BÀI TOÁN TÍNH XÁC SUẤT
1. Hướng dẫn học sinh giải các bài toán xác suất có không gian mẫu được mô tả cụ thể :
Yêu cầu học sinh tư duy lại các kiến thức cơ bản về xác suất theo sơ đồ:





















* Một số tài liệu cũ có thể bị lỗi font khi hiển thị do dùng bộ mã không phải Unikey ...

Người chia sẻ: Nguyễn Mai Anh Thư
Dung lượng: | Lượt tài: 0
Loại file:
Nguồn : Chưa rõ
(Tài liệu chưa được thẩm định)