TUYỂN 40 ĐỀ TOÁN - THI THỬ ĐH 2012
Chia sẻ bởi Nguyễn Thành Tâm |
Ngày 26/04/2019 |
82
Chia sẻ tài liệu: TUYỂN 40 ĐỀ TOÁN - THI THỬ ĐH 2012 thuộc Toán học
Nội dung tài liệu:
ĐỀ THI THỬ ĐẠI HỌC, CAO ĐẲNG 2012
Môn thi : TOÁN (ĐỀ 1 )
I. PHẦN CHUNG (7 điểm) (Cho tất cả các thí sinh)
Câu 1 (2đ) Cho hàm số: y = 2x3 - 3x2 + 1 (1)
1. Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số (1)
2. Tìm trên (C) những điểm M sao cho tiếp tuyến của (C) tại M cắt trục tung tại điểm có tung độ bằng 8.
Câu 2 (2đ) 1. Giải hệ phương trình:
2. Giải phương trình: 9x + ( - 12).3x + 11 - = 0
Câu 3 (1đ) Tính thể tích khối chóp tam giác đều S.ABC có cạnh đáy bằng a và khoảng cách giữa cạnh bên và cạnh đáy đối diện bằng m.
Câu 4 (1đ) Tính tích phân:
Câu 5 (1đ) Cho tam giác ABC, với BC = a, CA = b, AB = c.
Thoả mãn hệ điều kiện: CMR:
II. PHẦN RIÊNG (3đ) (Thí sinh chỉ làm một trong hai phần)
Theo chương trình chuẩn:
Câu 6a (2đ)
1. Trong mặt phẳng (oxy) cho đường thẳng (d): 3x - 4y + 5 = 0 và đường tròn (C): x2 + y2 + 2x - 6y + 9 = 0
Tìm những điểm M (C) và N (d) sao cho MN có độ dài nhỏ nhất.
2. Trong không gian (oxyz) cho hai mặt phẳng:
(P1): x - 2y + 2z - 3 = 0
(P2): 2x + y - 2z - 4 = 0 và đường thẳng (d):
Lập phương trình mặt cầu (S) có tâm I (d) và tiếp xúc với hai mặt phẳng (P1), (P2).
Câu 7a (1đ) Đặt: (1 - x + x2 - x3)4 = a0 + a1x + a2x2 + ... + a12x12.
Tính hệ số a7.
Theo chương trình nâng cao
Câu 6b (2đ)
1. Trong mặt phẳng (oxy) cho đường tròn (C): (x + 1)2 + (y - 3)2 = 1 và điểm
M . Tìm trên (C) những điểm N sao cho MN có độ dài lớn nhất.
2. Trong không gian (oxyz), cho mặt cầu (S): x2 + y2 + z2 + 2x - 4y - 2z + 5 = 0 và mặt phẳng (P): x - 2y + 2z - 3 = 0.
Tìm những điểm M (S), N (P) sao cho MN có độ dài nhỏ nhất.
Câu 7b (1đ) Dùng định nghĩa, tính đạo hàm của hàm số:
khi x 0, và ; tại điểm x0 = 0.
ĐÁP ÁN ĐỀ THI THỬ ĐẠI HỌC, CAO ĐẲNG 2012
Môn thi : TOÁN (ĐỀ 1 )
I. PHẦN CHUNG (7 điểm) ĐIỂM
Câu 1 (2đ) y = 2x3 - 3x2 + 1
1) Khảo sát và vẽ đồ thị (C)
* TXĐ: R
* Sự biến thiên: + Giới hạn: = , = 0,25đ
+ Bảng biến thiên: y’ = 6x2 - 6x = 6x (x - 1)
y` = 0 0,25đ
Lập BBT; nêu đúng các khoảng đơn điệu và các điểm cực trị 0,25đ
* Đồ thị: (tự vẽ), rõ ràng, đầy đủ, chính xác. 0,25đ
2) Tìm M (C) ?
Giả sử M (x0; y0) (C) y0 = 2x03 - 3x02 + 1
Tiếp tuyến () của (C) tại M:
y = (6x02 - 6x0) (x - x0) + 2x03 - 3x02 + 1 0,25đ
() đi qua điểm P(0 ; 8) 8 = -4x03 + 3x02 + 1
(x0 + 1) (4x02 - 7x0 + 7) = 0 0,25đ
x0 = -1 ; (4x02 - 7x0 + 7 > 0, x0) 0,25đ
Vậy, có duy nhất điểm M (-1 ; -4) cần tìm. 0,25đ
Câu 2 (2đ)
1) Giải hệ: 0,25đ
Môn thi : TOÁN (ĐỀ 1 )
I. PHẦN CHUNG (7 điểm) (Cho tất cả các thí sinh)
Câu 1 (2đ) Cho hàm số: y = 2x3 - 3x2 + 1 (1)
1. Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số (1)
2. Tìm trên (C) những điểm M sao cho tiếp tuyến của (C) tại M cắt trục tung tại điểm có tung độ bằng 8.
Câu 2 (2đ) 1. Giải hệ phương trình:
2. Giải phương trình: 9x + ( - 12).3x + 11 - = 0
Câu 3 (1đ) Tính thể tích khối chóp tam giác đều S.ABC có cạnh đáy bằng a và khoảng cách giữa cạnh bên và cạnh đáy đối diện bằng m.
Câu 4 (1đ) Tính tích phân:
Câu 5 (1đ) Cho tam giác ABC, với BC = a, CA = b, AB = c.
Thoả mãn hệ điều kiện: CMR:
II. PHẦN RIÊNG (3đ) (Thí sinh chỉ làm một trong hai phần)
Theo chương trình chuẩn:
Câu 6a (2đ)
1. Trong mặt phẳng (oxy) cho đường thẳng (d): 3x - 4y + 5 = 0 và đường tròn (C): x2 + y2 + 2x - 6y + 9 = 0
Tìm những điểm M (C) và N (d) sao cho MN có độ dài nhỏ nhất.
2. Trong không gian (oxyz) cho hai mặt phẳng:
(P1): x - 2y + 2z - 3 = 0
(P2): 2x + y - 2z - 4 = 0 và đường thẳng (d):
Lập phương trình mặt cầu (S) có tâm I (d) và tiếp xúc với hai mặt phẳng (P1), (P2).
Câu 7a (1đ) Đặt: (1 - x + x2 - x3)4 = a0 + a1x + a2x2 + ... + a12x12.
Tính hệ số a7.
Theo chương trình nâng cao
Câu 6b (2đ)
1. Trong mặt phẳng (oxy) cho đường tròn (C): (x + 1)2 + (y - 3)2 = 1 và điểm
M . Tìm trên (C) những điểm N sao cho MN có độ dài lớn nhất.
2. Trong không gian (oxyz), cho mặt cầu (S): x2 + y2 + z2 + 2x - 4y - 2z + 5 = 0 và mặt phẳng (P): x - 2y + 2z - 3 = 0.
Tìm những điểm M (S), N (P) sao cho MN có độ dài nhỏ nhất.
Câu 7b (1đ) Dùng định nghĩa, tính đạo hàm của hàm số:
khi x 0, và ; tại điểm x0 = 0.
ĐÁP ÁN ĐỀ THI THỬ ĐẠI HỌC, CAO ĐẲNG 2012
Môn thi : TOÁN (ĐỀ 1 )
I. PHẦN CHUNG (7 điểm) ĐIỂM
Câu 1 (2đ) y = 2x3 - 3x2 + 1
1) Khảo sát và vẽ đồ thị (C)
* TXĐ: R
* Sự biến thiên: + Giới hạn: = , = 0,25đ
+ Bảng biến thiên: y’ = 6x2 - 6x = 6x (x - 1)
y` = 0 0,25đ
Lập BBT; nêu đúng các khoảng đơn điệu và các điểm cực trị 0,25đ
* Đồ thị: (tự vẽ), rõ ràng, đầy đủ, chính xác. 0,25đ
2) Tìm M (C) ?
Giả sử M (x0; y0) (C) y0 = 2x03 - 3x02 + 1
Tiếp tuyến () của (C) tại M:
y = (6x02 - 6x0) (x - x0) + 2x03 - 3x02 + 1 0,25đ
() đi qua điểm P(0 ; 8) 8 = -4x03 + 3x02 + 1
(x0 + 1) (4x02 - 7x0 + 7) = 0 0,25đ
x0 = -1 ; (4x02 - 7x0 + 7 > 0, x0) 0,25đ
Vậy, có duy nhất điểm M (-1 ; -4) cần tìm. 0,25đ
Câu 2 (2đ)
1) Giải hệ: 0,25đ
* Một số tài liệu cũ có thể bị lỗi font khi hiển thị do dùng bộ mã không phải Unikey ...
Người chia sẻ: Nguyễn Thành Tâm
Dung lượng: |
Lượt tài: 0
Loại file:
Nguồn : Chưa rõ
(Tài liệu chưa được thẩm định)