Toán 9

Chia sẻ bởi Lê Thị Hải Châu | Ngày 12/10/2018 | 110

Chia sẻ tài liệu: Toán 9 thuộc Đọc diễn cảm

Nội dung tài liệu:


SỞ GIÁO DỤC & ĐÀO TẠO NGHỆ AN

KỲ THI CHỌN HỌC SINH GIỎI TỈNH LỚP 9 THCS
NĂM HỌC 2010 - 2011



Môn thi: TOÁN - BẢNG A
Thời gian: 150 phút (không kể thời gian giao đề)
Câu 1 (4,0 điểm).
a) Cho các số nguyên a1, a2, a3, ... , an. Đặt S = 
và .
Chứng minh rằng: S chia hết cho 6 khi và chỉ khi P chia hết cho 6.
b) Cho A =  (với  n > 1). Chứng minh A không phải là số chính phương.
Câu 2 (4,5 điểm).
a) Giải phương trình: 
b) Giải hệ phương trình: 
Câu 3 (4,5 điểm).
a) Cho x > 0, y > 0, z > 0 và .
Chứng minh rằng: 
b) Cho x > 0, y > 0, z > 0 thỏa mãn .
Tìm giá trị lớn nhất của biểu thức: 

Câu 4 (4,5 điểm).
Cho tam giác ABC có ba góc nhọn nội tiếp đường tròn (O), H là trực tâm của tam giác. Gọi M là một điểm trên cung BC không chứa điểm A. (M không trùng với B và C). Gọi N và P lần lượt là điểm đối xứng của M qua các đường thẳng AB và AC.
a) Chứng minh ba điểm N, H, P thẳng hàng.
b) Khi , xác định vị trí của điểm M để  đạt giá trị nhỏ nhất.
Câu 5 (2,5 điểm).
Cho tam giác ABC nội tiếp đường tròn tâm O, một điểm I chuyển động trên cung BC không chứa điểm A (I không trùng với B và C). Đường thẳng vuông góc với IB tại I cắt đường thẳng AC tại E, đường thẳng vuông góc với IC tại I cắt đường thẳng AB tại F. Chứng minh rằng đường thẳng EF luôn đi qua một điểm cố định.
- - - Hết - - -
Họ và tên thí sinh:................................................................................ Số báo danh: .....................................


SỞ GIÁO DỤC & ĐÀO TẠO NGHỆ AN

KỲ THI CHỌN HỌC SINH GIỎI TỈNH LỚP 9 THCS
NĂM HỌC 2010 - 2011



Môn thi: TOÁN - BẢNG B
Thời gian: 150 phút (không kể thời gian giao đề)
Câu 1 (5,0 điểm).
a) Chứng minh rằng với mọi số nguyên n thì  không chia hết cho 3.
b) Tìm tất cả các số tự nhiên n sao cho  là một số chính phương.
Câu 2 (5,0 điểm)
a) Giải phương trình: 
b) Giải hệ phương trình: 
Câu 3 (3,0 điểm).
Tìm giá trị nhỏ nhất của biểu thức: 
Câu 4 (4,5 điểm)
Cho tam giác ABC có ba góc nhọn nội tiếp đường tròn (O). Các đường cao BE, CF của tam giác ABC cắt nhau tại H.
a) Chứng minh rằng BH.BE + CH.CF = 
b) Gọi K là điểm đối xứng với H qua BC. Chứng minh rằng K(O).
Câu 5 (2,5 điểm).
Cho tam giác ABC nội tiếp đường tròn tâm O, một điểm I chuyển động trên cung BC không chứa điểm A (I không trùng với B và C). Đường thẳng vuông góc với IB tại I cắt đường thẳng AC tại E, đường thẳng vuông góc với IC tại I cắt đường thẳng AB tại F. Chứng minh rằng đường thẳng EF luôn đi qua một điểm cố định.
- - - Hết - - -




Họ và tên thí sinh:................................................................................ Số báo danh: .....................................
* Một số tài liệu cũ có thể bị lỗi font khi hiển thị do dùng bộ mã không phải Unikey ...

Người chia sẻ: Lê Thị Hải Châu
Dung lượng: 184,00KB| Lượt tài: 0
Loại file: doc
Nguồn : Chưa rõ
(Tài liệu chưa được thẩm định)