Toan 12

Chia sẻ bởi Phạm Ngọc Toản | Ngày 02/05/2019 | 52

Chia sẻ tài liệu: toan 12 thuộc Bài giảng khác

Nội dung tài liệu:

ĐỀ THI THỬ ĐẠI HỌC, CAO ĐẲNG 2012
Môn thi : TOÁN ( ĐỀ 6)

Câu 1: Cho hàm số 
Định m để hàm số chỉ có cực đại mà không có cực tiểu
a) Khảo sát và vẽ đồ thị (C) hàm số khi m=0
b) Dùng (C), biện luận theo tham số a số nghiệm của phương trình:

Câu 2: Giải hệ: 
Câu 3: Giải phương trình sau: 
Câu 4: Trong mặt phẳng toạ độ Oxy, cho đường thẳng (d):2x-y+3=0 và 2 điểm A(4;3); B(5;1). Tìm điểm M trên (d) sao cho MA+MB nhỏ nhất
Câu 5: Trong không gian Oxyz, cho bốn điểm A(4;4;4); B(6;-6;6); C(-2;10;-2) và
S(-2;2;6).
Chứng minh OBAC là 1 hình thoi và chứng minh SI vuông góc với mặt phẳng (OBAC) (I là tâm của hình thoi)
Tính thể tích của hình chóp S.OBAC và khoảng cách giữa 2 đường thẳng SO và AC
Gọi M là trung điểm SO, mặt phẳng (MAB) cắt SC tại N, tính diện tích tứ giác ABMN
Câu 6: Tính 
Câu 7: Hãy tìm số hạng có hệ số lớn nhất trong khai triển Newton của biểu thức 
Câu 8: Cho 4 số dương a,b,c,d.CMR: 
.................................................................................................................................................
ĐỀ THI THỬ ĐẠI HỌC, CAO ĐẲNG 2012
Môn thi : TOÁN ( ĐỀ 7)
Câu 1: Cho hàm số (C)
Khảo sát hàm số
Tìm phương trình tiếp tuyến của (C) có khoảng cách đến điểm A(0;-3) bằng 
Câu 2: Cho hệ: (m là tham số)
Giải hệ khi m=2
Định m để hệ có nghiệm duy nhất
Câu 3: Giải các phương trình và hệ phương trình sau:
1) 
2) 
Câu 4: Trong mặt phẳng Oxy, cho parabol(P):  và 1 điểm thuộc đừơng chuẩn của (P).
Chứng minh rằng từ A luôn vẽ được đến (P) hai tiếp tuyến vuông góc với nhau
Gọi M1,M2 là hai tiếp điểm của hai tiếp tuyến trên với (P) hãy chứng minh đường thẳng M1M2 luôn đi qua điểm cố định và chứng minh rằng đường tròn qua 3 điểm A,M1,M2 luôn tiếp xúc với 1 đường thẳng cố định
Câu 5: Cho mặt phẳng (P): và đường thẳng d: 
Tìm phương trình hình chiếu vuông góc của d lên (P)
Tìm phương trình hình chiếu của d lên (P) theo phương của đường thẳng 
Câu 6: Cho f là hàm chẵn liên tục trên [-a;a] (a>0). CMR: 
Áp dụng: Tính: 
Câu 7: CMR: 
Câu 8: Tìm giá trị của tham số m để giá trị lớn nhất của hàm số:  trên [-1;1] là nhỏ nhất
....................................................................
ĐỀ THI THỬ ĐẠI HỌC, CAO ĐẲNG 2012
Môn thi : TOÁN ( ĐỀ 8)
Câu 1: Cho hàm số: 
Tìm các giá trị của m để đồ thị hàm tương ứng có 1 điểm cực trị thuộc góc phần tư thứ (II) và 1 điểm cực trị thuộc góc phần tư thứ (IV) của mặt phẳng toạ độ.
Khảo sát và vẽ đồ thị (C) của hàm số khi m=-1. Dùng (C), biện luận theo a số nghiệm thuộc của phương trình: 
Câu 2: Tìm m sao cho hệ bất phương trình sau có nghiệm: 
Câu 3: Định a để hai phương trình sau là 2 phương trình tương đương
 (1)
 (2)
Câu 4: Trong mặt phẳng Oxy cho 3 điểm I(2;4); B(1;1); C(5;5). Tìm điểm A sao cho I là tâm đường tròn nội tiếp tam giác ABC
Câu 5: Trong không gian Oxyz, cho tam giác ABC có A(1;1;2); B(4;1;2); C(1;4;2)
Chứng minh tam giác ABC vuông cân
Tìm tọa độ điểm S biết SA vuông góc với mặt phẳng (ABC) và mặt cầu ngoại tiếp tứ diện S.ABC tiếp xúc với mặt phẳng (P): x+y+4=0
Câu 6: Cho hình nón có đỉnh S, đáy là đường tròn tâm O, SA và SB là hai đường sinh biết SO=3, khoảng cách từ O đến mặt phẳng SAB bằng 1, diện tích tam giác SAB bằng 18. Tính thể tích và diện tích xung quanh của hình nón đã cho
Câu
* Một số tài liệu cũ có thể bị lỗi font khi hiển thị do dùng bộ mã không phải Unikey ...

Người chia sẻ: Phạm Ngọc Toản
Dung lượng: | Lượt tài: 0
Loại file:
Nguồn : Chưa rõ
(Tài liệu chưa được thẩm định)