Skkn:cấp tỉnh

Chia sẻ bởi Nguyễn Kim Chánh | Ngày 02/05/2019 | 24

Chia sẻ tài liệu: skkn:cấp tỉnh thuộc Bài giảng khác

Nội dung tài liệu:

RÈN LUYỆN KỸ NĂNG GIẢI
“TOÁN CHIA HẾT” TRONG CHƯƠNG TRÌNH TOÁN THCS

A. ĐẶT VẤN ĐỀ

I./MỤC ĐÍCH YÊU CẦU
Kỹ năng giải toán và biết vận dụng kiến thức đã học của học sinh vào giải bài tập là vấn đề mà giáo viên nói chung luôn phải quan tâm. Thực tiễn dạy và học cho thấy chúng ta còn có nhiều vấn đề cần giải quyết lâu dài, kỹ năng giải toán, các phép biến đổi cơ bản, phương pháp giải toán chia hết của học sinh còn rất yều. Nhận thức về đề trên, tôi muốn truyền đạt cho các em nhiều dạng toán để cung cấp cho các em những kiến thức, kỹ năng, kỹ xảo để giải toán,... Một trong các dạng toán đó là “Dạng toán chia hềt”.
Do đó mục đích viết đề tài này là có thể góp phần bé nhỏ nào đó của mình vào việc nâng cao chất lượng dạy và học nói chung và giúp các em HS nắm chắc các phương pháp giải dạng toán “chia hết”, hình thành cho các em các kỹ năng suy luận, biến đổi, nhận dạng và thể hiện tốt lời giải bài toán
II./THỰC TRẠNG BAN ĐẦU
Dạng toán chia hết được đề cập trong SGK ngay từ đầu lớp 6 đến lớp 9 và mỗi lớp có yêu cầu khác nhau nên làm cho người dạy và người học rất vất vả nhất là đối với HS lớp 8 và lớp 9. Thông thường khi dạy dạng toán này giáo viên lại phải nhắc lại các kiến thức cơ bản đã học ở lớp dưới làm mất rất nhiều thời gian của tiết dạy. Bên cạnh đó kỹ năng biến đổi để làm xuất hiện các yếu tố chia hết trong biểu thức số hay biểu thức đại số của các em còn chưa linh hoạt, có những bài toán rất đơn giản mà các em biến đổi rất dài dòng và rất phức tạp, thực chất nêú các em nắm chắc các phương pháp giải dạng toán chia hết thì rất đơn giản.Trong quá trình giảng dạy nhiều GV không hay để ý tới dạng toán này vì dạng toán này thường được đặt dưới bài toán cụ thể trong SGK nên không nghĩ đó là trọng tâm của bài. Bên cạnh đó nếu có giải thì cũng chưa yêu cầu học sinh làm thêm trong sách bài tập hoặc ngoài phạm vi sách giáo khoa để rèn luyện kỹ năng và phát triển tư duy của HS. Mặt khác tài liệu tham khảo viết về dạng toán này hầu như không có ở thư viện của trường. Từ những suy nghĩ đó và thực tế giảng dạy tôi đã mạnh dạn viết đề tài này
III/ GIẢI PHÁP
Trong quá trình giảng dạy tôi thấy đa phần học sinh chưa có kỹ năng giải toán “chia hết” vì các em chưa biết bài toán đó cần áp dụng phương pháp nào để giải cho kết quả đúng nhất, nhanh nhất và đơn giản nhất. Vì vậy để nâng cao kỹ năng giải toán “chia hết” thì các em phải nắm được các dạng toán, các phương pháp gỉải, các kiến thức cơ bản được cụ thể hoá trong từng bài, từnbg chương, từng khối lớp. Có thể nói rằng dạng toán “chia hết” luôn là dạng toán khó đối với học sinh và không ít học sinh cảm thấy sợ khi học dạng toán này
Là một giáo viên dạy toán tôi mong các em chinh phục được nó và không chút ngần ngại khi gặp dạng toán này. Nhằm giúp các em phát triển tư duy suy luận và óc phán đoán, kỹ năng trình bày linh hoạt. Hệ thống bài tập tôi đưa ra từ dễ đến khó, bên cạnh đó còn có những bài tập nâng cao dành cho học sinh giỏi. Lượng bài tập cũng tương đối nhiều nên các em có thể tự học, tự chiếm lĩnh tri thức thông qua hệ thống bài tập áp dụng này, điều đó giúp các em hứng thú học tập hơn rất nhiều
B./GIẢI QUYẾT VẦN ĐỀ
I/CƠ SỞ LÝ LUẬN
Đề tài được nghiên cứu thực hiện trên thực tế tiết dạy về các bài tập thể hiện dạng toán “chia hết”. Và trong những năm gần đây phương pháp dạy học môn Toán đã có một số cải tiến mới nhằm phát huy tính tích cực của học sinh bằng cách tăng cường hệ thống câu hỏi và bài tập có yêu cầu phát triển tư duy trong quá trình giảng dạy bài mới. Vì vậy hệ thống bài tập thể hiện dạng toán “chia hết” cũng có một vai trò quan trọng trong giải toán. Nó giúp học sinh phát triển khả năng tư duy, khả năng vận dụng các kiến thức đã học một cách linh hoạt vào giải toán, trình bày lời giải chính xác và lôgic
II./GIẢ THUYẾT
Để giúp học sinh học tốt, làm tốt được dạng toán “chia hết” này tôi đã trang bị cho học sinh nội dung kiến thức sau, đó là nền tảng, là cơ sở để áp dụng giải các bài tập dạng này
1.Tính chất chia hết của một tổng, một hiệu, một tích
-Nếu a  m và b  m thì a+
* Một số tài liệu cũ có thể bị lỗi font khi hiển thị do dùng bộ mã không phải Unikey ...

Người chia sẻ: Nguyễn Kim Chánh
Dung lượng: | Lượt tài: 0
Loại file:
Nguồn : Chưa rõ
(Tài liệu chưa được thẩm định)