Phuong phap giai toan hh
Chia sẻ bởi Vũ Đức Duy |
Ngày 02/05/2019 |
34
Chia sẻ tài liệu: phuong phap giai toan hh thuộc Bài giảng khác
Nội dung tài liệu:
LỜI NÓI ĐẦU
Các em học sinh thân mến!
Tài liệu “Phương pháp giải toán HÌNH HỌC KHÔNG GIAN” giúp
các em nắm vững các phương pháp chứng minh hình học không gian.
Trong tài liệu này gồm có:
+ Các phương pháp giải toán.
+ 44 bài tập ôn thi tốt nghiệp THPT.
+ 100 bài tập luyện thi ĐẠI HỌC &CAO ĐẲNG.
Để sử dụng tài liệu này,trước khi đến học ở trung tâm,các em phải
đọc kĩ các phương pháp giải toán, các ví dụ, làm các bài tập ôn thi tốt
nghiệp trước,còn các bài tập luyện thi Đại học ở mức độ khó các em
phải quyết tâm mới giải được.Nếu có vấn đề các em chưa hiểu thầy sẽ
giúp các em giải quyết thêm ở lớp.
Quá trình biên soạn tài liệu này không tránh khỏi sai sót.
Rất mong có sự góp ý từ các bậc phụ huynh và các em học sinh.
CHÚC CÁC EM THÀNH ĐẠT!
CÁC PHƯƠNG PHÁP CHỨNG MINH HÌNH HỌC
I.Phương pháp chứng minh đường thẳng song song mặt phẳng:
♦Phương pháp1:
Muốn chứng minh đường thẳng song song với mặt phẳng ta chứng minh đường thẳng đó không nằm trong mặt phẳng và song song với một đường thẳng nào đó nằm trong mặt phẳng.
Ví dụ: Cho tứ diện ABCD.Gọi M,N lần lượt là trung điểm của AB, AD.
Chứng minh MN song song với mặt phẳng (BCD).
Giải: Trong tam giác ABD có:
M trung điểm của AB
N trung điểm của AD.
Nên MN là đường trung bình của
tam giác ABD
Do đó MN // BD
Mà BD (BCD)
MN
Vậy MN // (BCD).
♦Phương pháp2:
Muốn chứng minh đường thẳng a song song mặt phẳng (P) ta chứng minh đường thẳng a nằm trong mặt phẳng (Q) mà (Q) // (P)
Ví dụ: Cho hình hộp ABCD.A’B’C’D’. M; N tuỳ ý trên mặt phẳng (ABCD).
Chứng minh MN // mặt phẳng (A’B’C’D’).
♦Phương pháp 3:
Muốn chứng minh đường thẳng a song song mặt phẳng (P), ta chứng minh đường thẳng a và mặt phẳng (P) không có điểm chung cùng vuông góc với một đường thẳng b.
♦Phương pháp 4:
Muốn chứng minh đường thẳng a song song mặt phẳng (P), ta chứng minh đường thẳng a và mặt phẳng (P) không có điểm chung cùng vuông góc với một mặt phẳng (Q).
♦Phương pháp 5:
Muốn chứng minh đường thẳng a song song mặt phẳng (P), ta chứng minh đường thẳng a song song b mà đường thẳng b song song với mặt phẳng (P)(a và (P) không có điểm chung)
II.Phương pháp chứng minh hai đường thẳng song song:
♦Phương pháp 1:
Sử dụng định lý: Nếu hai mặt phẳng cắt nhau lần lượt đi qua hai đường thẳng song song thì giao tuyến của chúng song song với hai đường thẳng đó(hoặc trùng với một trong hai đường thẳng đó).
♦Phương pháp2:
Sử dụng định lý: Nếu đường thẳng a song song mặt phẳng (P) thì mọi mặt phẳng (Q) chứa a mà cắt mặt phẳng (P) thì cắt theo giao tuyến b song song với đường thẳng a.
♦Phương pháp 3:
Sử dụng định lý: Nếu mặt phẳng (R) cắt hai mặt phẳng song song (P) và (Q) lần lượt theo hai giao tuyến a và b thì a//b.
♦Phương pháp 5:
Sử dụng định lý: Nếu hai mặt phẳng cùng song song với một đường thẳng thì giao tuyến của chúng(nếu có) song song với đường thẳng đó.
III.Phương pháp chứng minh hai mặt phẳng song song:
♦Phương pháp 1:
Muốn chứng minh hai mặt phẳng song song, ta chứng minh mặt phẳng này chứa hai đường thẳng cắt nhau cùng song song với mặt phẳng kia.
Nếu a // (Q)
b// (Q)
a,b
a cắt b
Thì (P) // (
* Một số tài liệu cũ có thể bị lỗi font khi hiển thị do dùng bộ mã không phải Unikey ...
Người chia sẻ: Vũ Đức Duy
Dung lượng: |
Lượt tài: 0
Loại file:
Nguồn : Chưa rõ
(Tài liệu chưa được thẩm định)