On tap Toan 9 chuan Thi vao THPT
Chia sẻ bởi Phạm Tuấn Anh |
Ngày 19/10/2018 |
25
Chia sẻ tài liệu: On tap Toan 9 chuan Thi vao THPT thuộc Tiếng Anh 9
Nội dung tài liệu:
TRƯỜNG THCS SƠN TIẾN ĐỀ CƯƠNG ÔN TẬP HKII 09 - 10
TỔ: TOÁN - LÝ - Tin Môn: TOÁN 9
PHẨN 1: LÝ THUYẾT
A/ ĐẠI SỐ
1/ Nêu tính chất và dạng đồ thị của hàm số y = ax2 với a ≠ 0
2/ Định nghĩa phương trình bậc hai môt ẩn. Khi nào thì phương trình vô nghiệm ; có nghiệm kép ; có hai nghiệm phân biệt ; có nghiệm Viết công thức nghiệm trong mỗi trường hợp
3/ Phát biểu định lí Vi-ét và chứng minh
4/ Nêu cách tìm hai số khi biết tổng S và tích P của chúng
B/ HÌNH HỌC
1/ Khi nào thì ?
2/ Nêu mối quan hệ giữa cung nhỏ và dây căng cung đó trong một đường tròn
3/ Nắm vững các định lý và hệ quả : Về góc nội tiếp , góc tạo bới tia tiếp tuyến và dây cung , góc có đỉnh ở bên trong ; bên ngoài đường tròn
4/Tính chất của đường tròn nội tiếp; ngoại tiếp tam giác đều , hình vuông …
5/ Quỹ tích cung chứa góc
6/ Các dấu hiệu nhận biết tứ giác nội tiếp
7/ Công thức tính độ dài cung , diện tích hình quạt tròn …
8/ Khái niệm Hình trụ , hình nón , hình cấu . Các công thức tính diện tích xung quanh , thể tích
PHẦN II : ĐỀ BÀI TOÁN
A/ ĐẠI SỐ
Bài 1 : Cho hàm số y = ax2 có đồ thị là (P) . Đồ thị hàm số đi qua điểm có tọa độ ( 1; )
Xác định hệ số a . Nêu tính chất của hàm số với a tìm được
Vẽ (P) . Nhận xét dạng đồ thị
Trên (P) lấy hai điểm A, B lần lượt có hoành độ là – 2 ; 1 . Tìm tọa độ của A và B . Viết phương trình đường thẳng AB
Viết phương trình đường thẳng (d) song song với AB và tiếp xúc với (P)
Bài 2: Cho hàm số y = ax2 .
Xác định hệ số a biết đồ thị hàm số tiếp xúc với đường thẳng y = 2x – 3
Tìm tọa độ tiếp điểm
Vẽ đồ thị của hai hàm số trên cùng mặt phẳng tọa độ
Bài 3 : Giải các phương trình :
a) 3x2 – 7 = 0 b) 4x2 + 5x = 0 c) ( x – 2 )2 = 1 – 5x d) x + 4 =
e) g) x4 – 5x2 + 4 = 0
Bài 4 : Cho phương trình : x2 – 2mx + m – 1 = 0
Giải phương trình khi m = – 3
Tìm m để phương trình có hai nghiệm x1 ; x2 mà x1 = 2x2
Bài 5: Cho phương trình : x2 – mx + m – 1 = 0
Chứng tỏ phương trình luôn có nghiệm với mọi giá trị của m
Tìm giá trị của m để phương trình có nghiệm kép . Tính nghiệm kép
Bài 6 : Cho pt: x2 – 2mx – 5 = 0 (1)
a. Giải pt khi m = 2;
b. Chứng minh pt luôn có nghiệm với mọi giá trị của m;
c. Tìm m để pt (1) có hai nghiệm x1, x2 thoả mãn điều kiện .
Bài 7 : Cho phương trình : x2 - 2(m - 1)x -3 - m = 0
Chứng minh rằng phương trình luôn luôn có nghiệm với mọi m.
Xác định m để phương trình có hai nghiệm phân biệt x1, x2 thoả mãn :.
Xác định m để phương trình có nghiệm sao cho E = đạt giá trị nhỏ nhất.
Bài 8: Cho phương trình x4 – 3x2 + m = 0 (*)
a/ Giải phương trình khi m = 0
b/ Với giá trị nguyên nào của m thì phương trình (*)có bốn nghiệm đều dương ?
Bài 9 Cho phương trình
Giải phuơng trình khi m = -2
Tìm m để phương trình có 2 nghiệm thoả mãn điều kiện
Bài 10 : Cho hàm số y = x2 có đồ thị là (P) và hàm số y = mx + 2 có đồ thị là (D)
a/ Vẽ (P) .
b/ Tìm m để ( P) và (D) cắt nhau tại hai điểm có hoành độ x1 và x2 sao cho
x12 + x22 = 8.
Bài 11 Cho phương trình x2 – mx + m – 1 = 0 (ẩn x, tham số m)
Giải phương trình khi m = 3
Chứng tỏ phương trình có 2 nghiệm x1, x2 với mọi m.
Đặt A = . Chứng minh A = m2 – 8m + 8. Tính giá trị nhỏ nhất của A.
Bài 12 : Một đội công nhân dự định trồng 120 cây trụ điện , Số cây được chia đều cho mỗi tổ
* Một số tài liệu cũ có thể bị lỗi font khi hiển thị do dùng bộ mã không phải Unikey ...
Người chia sẻ: Phạm Tuấn Anh
Dung lượng: |
Lượt tài: 0
Loại file:
Nguồn : Chưa rõ
(Tài liệu chưa được thẩm định)