ÔN TẬP HKII TOÁN 10
Chia sẻ bởi Đỗ Thị Thu Thủy |
Ngày 27/04/2019 |
55
Chia sẻ tài liệu: ÔN TẬP HKII TOÁN 10 thuộc Đại số 10
Nội dung tài liệu:
ĐỀ CƯƠNG ÔN TẬP HỌC KÌ II MÔN TOÁN 10
A. CÁC VẤN ĐỀ TRONG HỌC KÌ II
I. Đại số:
Xét dấu nhị thức ,tam thức bậc hai; Giải phương trình, bất phương trình qui về bậc nhất; bậc hai; phương trình có chứa căn, trị tuyệt đố, tìm điều kiện phương trình, bất phương trình có nghiệm, vô nghiệm, có nghiệm thỏa mãn điều kiện.
Giải hệ bất phương trình bậc hai.
Biễu diễn miền nghiệm của hệ bất phương trình bậc nhất hai ẩn; ứng dụng vào bài toán tối ưu.
Tính tần số ;tần suất các đặc trưng mẫu ;vẽ biểu đồ biễu diễn tần số ,tần suất (chủ yếu hình cột và đường gấp khúc).
Tính số trung bình, số trung vị, mốt, phương sai và độ lệch chuẩn của số liệu thống kê.
Tính giá trị lượng giác một cung ,một biểu thức lượng giác.
Vận dụng các công thức lượng giác vào bài toán rút gọn hay chứng minh các đẳng thức lượng giác.
II. Hình học:
Viết phương trình đường thẳng (tham số ,tổng quát, chính tắc)
Xét vị trí tương đối điểm và đường thẳng ;đường thẳng và đường thẳng
Tính góc giữa hai đường thẳng ;khoảng cách từ điểm đến đường thẳng.
Viết phương trình đường phân giác (trong và ngoài).
Viết phương trình đường tròn; Xác định các yếu tố hình học của đường tròn.viết phương trình tiếp tuyến của đường tròn; biết tiếp tuyến đi qua một điểm (trên hay ngoài đường tròn), song song, vuông góc một đường thẳng.
Viết phương trình chính tắc của elíp; xác định các yếu tố của elíp.
Viết phương trình chính tắc của hypebol; xác định các yếu tố của hypebol.
Viết phương trình chính tắc của parabol; xác định các yếu tố của parabol.
Ba đường cô níc: khái niệm đường chuẩn, tính chất chung của ba đường coníc.
B. CƠ SỞ LÝ THUYẾT
I. Phần Đại số
1. Bất phương trình và hệ bất phương trình
Các phép biến đổi bất phương trình:
a) Phép cộng: Nếu f(x) xác định trên D thì P(x) < Q(x) P(x) + f(x) < Q(x) + f(x)
b) Phép nhân:
* Nếu f(x) >0, x D thì P(x) < Q(x) P(x).f(x) < Q(x).f(x)
* Nếu f(x) <0, x D thì P(x) < Q(x) P(x).f(x) > Q(x).f(x)
c) Phép bình phương: Nếu P(x) 0 và Q(x) 0, x D thì P(x) < Q(x)
2. Dấu của nhị thức bậc nhất
(Dấu nhị thức bậc nhất f(x) = ax + b
x
– +
f(x)
(Trái dấu với hệ số a) 0 (Cùng dấu với hệ số a)
* Chú ý: Với a > 0 ta có:
3. Phương trình và hệ bất phương trình bậc nhất hai ẩn
a. Biểu diễn hình học tập nghiệm của bất phương trình ax + by (1) ()
Bước 1: Trong mp Oxy, vẽ đường thẳng () : ax + by
Bước 2: Lấy (thường lấy )
Bước 3: Tính axo + byo và so sánh axo + byo và c.
Bước 4: Kết luận
( Nếu axo + byo < c thì nửa mp bờ () chứa Mo là miền nghiệm của ax + by
( Nếu axo + byo > c thì nửa mp bờ () không chứa Mo là miền nghiệm của ax + by
b. Bỏ bờ miền nghiệm của bpt (1) ta được miền nghiệm của bpt ax + by < c. Miền nghiệm của các bpt ax + by và ax + by được xác định tương tự.
c. Biểu diễn hình học tập nghiệm của hệ bất phương trình bậc nhất 2 ẩn:
( Với mỗi bất phương trình trong hệ, ta xác định miền nghiệm của nó và gạch bỏ miền còn lại.
( Sau khi làm như trên lần lượt đối với tất cả các bpt trong hệ trên cùng một mp tọa độ, miền còn lại không bị gạch chính là miền nghiệm của hệ bpt đã cho.
4. Dấu của tam thức bậc hai
a. Định lí về dấu của tam thức bậc hai:
@, Định lí: f(x) = ax2 + bx + c, a0
Nếu có một số sao cho thì:
f(
A. CÁC VẤN ĐỀ TRONG HỌC KÌ II
I. Đại số:
Xét dấu nhị thức ,tam thức bậc hai; Giải phương trình, bất phương trình qui về bậc nhất; bậc hai; phương trình có chứa căn, trị tuyệt đố, tìm điều kiện phương trình, bất phương trình có nghiệm, vô nghiệm, có nghiệm thỏa mãn điều kiện.
Giải hệ bất phương trình bậc hai.
Biễu diễn miền nghiệm của hệ bất phương trình bậc nhất hai ẩn; ứng dụng vào bài toán tối ưu.
Tính tần số ;tần suất các đặc trưng mẫu ;vẽ biểu đồ biễu diễn tần số ,tần suất (chủ yếu hình cột và đường gấp khúc).
Tính số trung bình, số trung vị, mốt, phương sai và độ lệch chuẩn của số liệu thống kê.
Tính giá trị lượng giác một cung ,một biểu thức lượng giác.
Vận dụng các công thức lượng giác vào bài toán rút gọn hay chứng minh các đẳng thức lượng giác.
II. Hình học:
Viết phương trình đường thẳng (tham số ,tổng quát, chính tắc)
Xét vị trí tương đối điểm và đường thẳng ;đường thẳng và đường thẳng
Tính góc giữa hai đường thẳng ;khoảng cách từ điểm đến đường thẳng.
Viết phương trình đường phân giác (trong và ngoài).
Viết phương trình đường tròn; Xác định các yếu tố hình học của đường tròn.viết phương trình tiếp tuyến của đường tròn; biết tiếp tuyến đi qua một điểm (trên hay ngoài đường tròn), song song, vuông góc một đường thẳng.
Viết phương trình chính tắc của elíp; xác định các yếu tố của elíp.
Viết phương trình chính tắc của hypebol; xác định các yếu tố của hypebol.
Viết phương trình chính tắc của parabol; xác định các yếu tố của parabol.
Ba đường cô níc: khái niệm đường chuẩn, tính chất chung của ba đường coníc.
B. CƠ SỞ LÝ THUYẾT
I. Phần Đại số
1. Bất phương trình và hệ bất phương trình
Các phép biến đổi bất phương trình:
a) Phép cộng: Nếu f(x) xác định trên D thì P(x) < Q(x) P(x) + f(x) < Q(x) + f(x)
b) Phép nhân:
* Nếu f(x) >0, x D thì P(x) < Q(x) P(x).f(x) < Q(x).f(x)
* Nếu f(x) <0, x D thì P(x) < Q(x) P(x).f(x) > Q(x).f(x)
c) Phép bình phương: Nếu P(x) 0 và Q(x) 0, x D thì P(x) < Q(x)
2. Dấu của nhị thức bậc nhất
(Dấu nhị thức bậc nhất f(x) = ax + b
x
– +
f(x)
(Trái dấu với hệ số a) 0 (Cùng dấu với hệ số a)
* Chú ý: Với a > 0 ta có:
3. Phương trình và hệ bất phương trình bậc nhất hai ẩn
a. Biểu diễn hình học tập nghiệm của bất phương trình ax + by (1) ()
Bước 1: Trong mp Oxy, vẽ đường thẳng () : ax + by
Bước 2: Lấy (thường lấy )
Bước 3: Tính axo + byo và so sánh axo + byo và c.
Bước 4: Kết luận
( Nếu axo + byo < c thì nửa mp bờ () chứa Mo là miền nghiệm của ax + by
( Nếu axo + byo > c thì nửa mp bờ () không chứa Mo là miền nghiệm của ax + by
b. Bỏ bờ miền nghiệm của bpt (1) ta được miền nghiệm của bpt ax + by < c. Miền nghiệm của các bpt ax + by và ax + by được xác định tương tự.
c. Biểu diễn hình học tập nghiệm của hệ bất phương trình bậc nhất 2 ẩn:
( Với mỗi bất phương trình trong hệ, ta xác định miền nghiệm của nó và gạch bỏ miền còn lại.
( Sau khi làm như trên lần lượt đối với tất cả các bpt trong hệ trên cùng một mp tọa độ, miền còn lại không bị gạch chính là miền nghiệm của hệ bpt đã cho.
4. Dấu của tam thức bậc hai
a. Định lí về dấu của tam thức bậc hai:
@, Định lí: f(x) = ax2 + bx + c, a0
Nếu có một số sao cho thì:
f(
* Một số tài liệu cũ có thể bị lỗi font khi hiển thị do dùng bộ mã không phải Unikey ...
Người chia sẻ: Đỗ Thị Thu Thủy
Dung lượng: |
Lượt tài: 19
Loại file:
Nguồn : Chưa rõ
(Tài liệu chưa được thẩm định)