ôn tập giữa hk1 toán 10

Chia sẻ bởi Nguyễn Thanh Vũ | Ngày 27/04/2019 | 65

Chia sẻ tài liệu: ôn tập giữa hk1 toán 10 thuộc Đại số 10

Nội dung tài liệu:

ĐỀ ÔN TẬP SỐ 01
Hãy xác định  trong các trường hợp sau:


Tìm tập xác định của các hàm số sau:



Tìm tham số  để hàm số  xác định với mọi 
Xét tính chẵn lẻ của các hàm số sau:


Cho parabol
Xác định parabol  biết rằng  có đỉnh  và qua điểm 
Khảo sát sự biến thiên và vẽ parabol vừa tìm được ở câu a).
Tìm tham số đểđường thẳng  cắt  tại hai điểm phân biệt ?
Cho tam giác  đều cạnh  có  là trọng tâm. Gọi  là trung điểm của  và  là điểm đối xứng của  qua 
Chứng minh rằng: 
Tính  và 
Gọi  là điểm đối xứng của điểm qua  và  là điểm thỏa mãn đẳng thức véctơ: Tính  theo  và 
Chứng minh rằng ba điểm  thẳng hàng.

ĐỀ ÔN TẬP SỐ 02
Hãy xác định  trong các trường hợp sau:
 với  và 

Tìm tập xác định của các hàm số sau:



Tìm tham số  để hàm số  xác định 
Xét tính chẵn lẻ của các hàm số sau:


Cho parabol
Xác định parabol  biết rằng  đi qua gốc tọa độ  và có trục đối xứng 
Khảo sát sự biến thiên và vẽ parabol vừa tìm được ở câu a).
Tìm  để  có hai nghiệm phân biệt nhỏ hơn hoặc bằng 
Cho hình vuông  cạnh  Gọi  là trọng tâm tam giác 
Chứng minh rằng: 
Tính: 
Gọi  là trọng tâm của tam giác  và  là các điểm được xác định bởi:  Chứng minh rằng:  thẳng hàng.

ĐỀ ÔN TẬP SỐ 03
Hãy xác định  trong các trường hợp sau:
 và  và 

Tìm tập xác định của các hàm số sau:



Tìm tham số  để hàm số  xác định với mọi 
Xét tính chẵn lẻ của các hàm số sau:


Cho parabol 
Xác định parabol biết  có trục đối xứng và cắt trục hoành tại điểm có hoành độ bằng 
Khảo sát sự biến thiên và vẽ parabol vừa tìm được ở câu a).
Tìm tham số  để phương trình  có  nghiệm phân biệt  đồng thời  nghiệm này thuộc đoạn 
Cho tam giác đều cạnh  có  là trọng tâm, gọi  là trung điểm  và  là trung điểm  Lấy điểm  đối xứng với  qua 
Tính 
Chứng minh:  với  bất kì.
Gọi  là điểm xác định bởi  Tính  theo 
Chứng minh ba điểm  thẳng hàng.

ĐỀ ÔN TẬP SỐ 04
Hãy xác định  trong các trường hợp sau:
 với  và 

Tìm tập xác định của các hàm số sau:



Tìm tham số  để hàm số  xác định 
Xét tính chẵn lẻ của các hàm số sau:


Cho parabol 
Xác định parabol biết rằngcó hoành độ đỉnh bằng  và đạt giá trị nhỏ nhất bằng 
Khảo sát sự biến thiên và vẽ đồ thị của parabol  vừa tìm được ở câu a).
Tìm tất cả các tham số  để phương trình  có hai nghiệm phân biệt nhỏ hơn 
Cho hình bình hành  có Gọi  là trung điểm của cạnh 
Tính  theo 
Gọi  là hai điểm thỏa  và  Hãy phân tích véctơ  theo hai véctơ  và 
Chứng minh ba điểm  thẳng hàng.

ĐỀ ÔN TẬP SỐ 05
Hãy xác định  trong các trường hợp sau:
 và  là số chẵn

Tìm tập xác định của các hàm số sau:



Tìm tham số  để hàm số  xác định 
Xét tính chẵn lẻ của các hàm số sau:


Cho parabol 
Xác định parabol biết rằngcó đỉnh  và cắt trục tung tại điểm có tung độ bằng 
Khảo sát sự biến thiên và vẽ đồ thị của parabol  vừa tìm được ở câu a). Từ đó suy ra đồ thị của hàm số 
Biện luận số nghiệm của phương trình 
Cho hình chữ nhật có tâm  và  là điểm tùy ý.
Chứng minh véctơ  không phụ thuộc vào vị trí điểm  và tính độ dài véctơ 
Gọi E, F là 2 điểm thỏa mãn: Phân tích vectơ  và  theo  và suy ra ba điểm thẳng hàng.
Cho tam giác có các đường trung tuyến 
Chứng minh rằng 
ĐỀ ÔN TẬP
* Một số tài liệu cũ có thể bị lỗi font khi hiển thị do dùng bộ mã không phải Unikey ...

Người chia sẻ: Nguyễn Thanh Vũ
Dung lượng: | Lượt tài: 4
Loại file:
Nguồn : Chưa rõ
(Tài liệu chưa được thẩm định)