Ôn tập Chương I. Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số
Chia sẻ bởi Lê Minh Tân |
Ngày 09/05/2019 |
69
Chia sẻ tài liệu: Ôn tập Chương I. Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số thuộc Giải tích 12
Nội dung tài liệu:
GV: LÊ MINH TÂN
TỔ: TOÁN
Chào mừng quý thầy cô đến dự giờ thăm lớp 12C10
Hãy nêu sơ đồ khảo sát hàm số đa thức ?
Sơ đồ khảo sát hàm số đa thức
1, TX§ : D=R
2, Kh¶o s¸t sù biÕn thiªn
* TÝnh ®¹o hµm y’ và giải y’= 0 tìm nghiệm (nếu có)
* T×m c¸c giíi h¹n :
* LËp b¶ng biÕn thiªn Khoảng ĐB,NB , CĐ,CT
3 , VÏ ®å thÞ
* C¸c ®iÓm ®Æc biÖt (®iÓm cùc trÞ , ...)
* VÏ ®å thÞ
Ví dụ1: Khảo sát hàm số: y= x4-2x2-3
1) Tập xác định: D=R
2) Sự biến thiên:
a) Chiều biến thiên:
y’=4x3-4x
y’ = 0 x= -1, x=0, x=1
Hàm số đồng trên (-1;0) và (1;+) ,
Hàm số nghịch biến trên (0;1) và (-;-1)
b) Cực trị:
Hàm số đạt cực tiểu tại x= 1,yCT = -4
Hàm số đạt cực đại tại x = 0 ,yCĐ = -3.
d) Bảng Biến Thiên:
3) Đồ thị :
Giao điểm với trục tung là (0;-3) .
Vẽ đồ thị
Ví dụ 2: Khảo sát hàm số:
TXĐ : D=R
Sự biến thiên:
a)Chiều biến thiên:
y’=-2x3-2x=-2x(x2+1)
y’ = 0 x=0 (y=3/2)
Hàm số đồng biến trên (-;0)
Hàm số nghịch biến trên (0;+ )
b) Cực trị: Hàm số đạt cực đại x = 0; yCĐ=3/2.
y’’=-2(3x2+1) < 0 xR
Hàm số không có điểm uốn
3)Đồ thị
Giao điểm với Oy là (0;3/2)
Giao điểm với Ox tại (-1; 0) và (1;0)
BBT
Bảng giá trị đặc biệt
Tóm tắt: y =ax4+bx2+c (a0)
y’=0 có
3 nghiệm
Phân biệt
y’=0 có
1 nghiệm
a>0
a<0
XIN TRÂN TRỌNG CẢM ƠN
CÁC THẦY CÔ GIÁO
ĐÃ NHIỆT TÌNH ĐẾN THAM DỰ vÀ GÓP Ý
CHO GIỜ DẠY ĐẠT KẾT QUẢ TỐT ĐẸP.
XIN CHÚC CÁC THẦY CÔ
SỨC KHOẺ VÀ HẠNH PHÚC
CÁC EM HỌC SINH
TỔ: TOÁN
Chào mừng quý thầy cô đến dự giờ thăm lớp 12C10
Hãy nêu sơ đồ khảo sát hàm số đa thức ?
Sơ đồ khảo sát hàm số đa thức
1, TX§ : D=R
2, Kh¶o s¸t sù biÕn thiªn
* TÝnh ®¹o hµm y’ và giải y’= 0 tìm nghiệm (nếu có)
* T×m c¸c giíi h¹n :
* LËp b¶ng biÕn thiªn Khoảng ĐB,NB , CĐ,CT
3 , VÏ ®å thÞ
* C¸c ®iÓm ®Æc biÖt (®iÓm cùc trÞ , ...)
* VÏ ®å thÞ
Ví dụ1: Khảo sát hàm số: y= x4-2x2-3
1) Tập xác định: D=R
2) Sự biến thiên:
a) Chiều biến thiên:
y’=4x3-4x
y’ = 0 x= -1, x=0, x=1
Hàm số đồng trên (-1;0) và (1;+) ,
Hàm số nghịch biến trên (0;1) và (-;-1)
b) Cực trị:
Hàm số đạt cực tiểu tại x= 1,yCT = -4
Hàm số đạt cực đại tại x = 0 ,yCĐ = -3.
d) Bảng Biến Thiên:
3) Đồ thị :
Giao điểm với trục tung là (0;-3) .
Vẽ đồ thị
Ví dụ 2: Khảo sát hàm số:
TXĐ : D=R
Sự biến thiên:
a)Chiều biến thiên:
y’=-2x3-2x=-2x(x2+1)
y’ = 0 x=0 (y=3/2)
Hàm số đồng biến trên (-;0)
Hàm số nghịch biến trên (0;+ )
b) Cực trị: Hàm số đạt cực đại x = 0; yCĐ=3/2.
y’’=-2(3x2+1) < 0 xR
Hàm số không có điểm uốn
3)Đồ thị
Giao điểm với Oy là (0;3/2)
Giao điểm với Ox tại (-1; 0) và (1;0)
BBT
Bảng giá trị đặc biệt
Tóm tắt: y =ax4+bx2+c (a0)
y’=0 có
3 nghiệm
Phân biệt
y’=0 có
1 nghiệm
a>0
a<0
XIN TRÂN TRỌNG CẢM ƠN
CÁC THẦY CÔ GIÁO
ĐÃ NHIỆT TÌNH ĐẾN THAM DỰ vÀ GÓP Ý
CHO GIỜ DẠY ĐẠT KẾT QUẢ TỐT ĐẸP.
XIN CHÚC CÁC THẦY CÔ
SỨC KHOẺ VÀ HẠNH PHÚC
CÁC EM HỌC SINH
* Một số tài liệu cũ có thể bị lỗi font khi hiển thị do dùng bộ mã không phải Unikey ...
Người chia sẻ: Lê Minh Tân
Dung lượng: |
Lượt tài: 1
Loại file:
Nguồn : Chưa rõ
(Tài liệu chưa được thẩm định)