Nghiên cứu tính đặt đúng của bài toán Cauchy - Dirichlet đối với phương trình parabolic cấp hai
Chia sẻ bởi Hoàng Tuấn Anh |
Ngày 02/05/2019 |
33
Chia sẻ tài liệu: nghiên cứu tính đặt đúng của bài toán Cauchy - Dirichlet đối với phương trình parabolic cấp hai thuộc Bài giảng khác
Nội dung tài liệu:
LỜI CẢM ƠN
Trong quá trình hoàn thành luận văn, tôi đã được sự chỉ đạo, hướng dẫn, động viên tận tình của cô giáo: Th.S Đoàn Thị Chuyên, giảng viên khoa Toán - Lí – Tin, đồng thời nhận được sự góp ý về đề tài, tạo điều kiện thuận lợi về cơ sở vật chất, thời gian, tài liệu tham khảo của các thầy cô trong khoa Toán – Lí – Tin, phòng nghiên cứu khoa học và thư viện trường đại học Tây Bắc. Bên cạnh đó tôi còn nhận được sự động viên giúp đỡ của các bạn trong tập thể lớp K47 - đại học sư phạm Toán, sự giúp đỡ trong việc đánh máy, in ấn của tất cả bạn bè, người thân.
Nhân dịp này, cho phép tôi bày tỏ lòng biết ơn sâu sắc tới sự giúp đỡ, động viên quý báu của các thầy cô, các bạn, tới những người thân, các đơn vị liên quan, đặc biệt là cô giáo Th.S Đoàn Thị Chuyên.
Sơn La, tháng 05 năm 2010
Người thực hiện
Lê Thị Liễu
MỤC LỤC
Lời cảm ơn…………………………………………………………….………....1
Phần mở đầu……………………………………………………………………..3
1. Lí do chọn khoá luận…………………………………………………...3
2. Đối tượng, phương pháp, phạm vi nghiên cứu………………………....3
3. Mục đích, nhiệm vụ và những đóng góp của khoá luận…………….....4
Chương 1. Một số kiến thức liên quan…………………………….….…............5
1.1 Không gian Sobolev………………………………………………….……...5
1.2 Một vài không gian của các hàm...................................................................17
1.2.1 Không gian hàm H -1…………………………………………….………..17
1.2.2 Không gian phụ thuộc thời gian ……………...………………………… 18
Không gian hàm Lp(0,T;X) ………………………………………….....18
Không gian hàm C([0,T];X)………………………………….……….....18
1.3. Các bất đẳng thức………………………………………………………….19
1.3.1 Bất đẳng thức Gronwall-Bellman……………………………….………..19
1.3.2 Bất đẳng thức năng lượng……………………………………….………..19
Chương 2.Tính đặt đúng của bài toán Cauchy – Dirichlet đối với phương
trình Parabolic cấp hai……………………………………………….…….......21
2.1 Mở đầu..........................................................................................................21
2.1.1 Thiết lập bài toán........................................................................................21
2.1.2 Mô típ của định nghĩa nghiệm suy rộng.....................................................22
2.1.3 Nghiệm suy rộng........................................................................................23
2.2 Sự tồn tại duy nhất của nghiệm suy rộng......................................................25
2.2.1 Một số đánh giá tiên nghiệm......................................................................25
2.2.2 Sự tồn tại nghiệm suy rộng.... ...................................................................28
2.2.3 Tính duy nhất nghiệm suy rộng..................................................................30
Kết luận.............................................................................................................. 31
Tài liệu tham khảo:………………………………………………..……………32
PHẦN MỞ ĐẦU
1. Lí do chọn khoá luận
Trong chương trình của bậc đại học, bước đầu chúng ta đã được làm quen với môn phương trình đạo hàm riêng. Trong đó, ta đã biết được các vấn đề cơ bản liên quan đến phương trình Lapace, phương trình truyền sóng, phương trình truyền nhiệt. Đó là các phương trình đơn giản lần lượt đại diện cho ba lớp phương trình đạo hàm riêng là phương trình loại eliptic, hypebolic và parabolic. Khi học ta thấy rằng, điều kiện tồn tại nghiệm theo nghĩa thông thường thường đòi hỏi khá nhiều yếu tố khắt khe như tính trơn đến cấp của phương trình, điều này gây khó khăn khi xét các bài toán đối với các phương trình trên những miền bất kì hoặc đối với những bài toán của các phương trình tổng quát hơn. Để khắc phục điều này, thay vì đi tìm nghiệm cổ điển, người ta đi tìm nghiệm suy rộng, tức là là nghiệm “ thô” lúc đầu là nghiệm “ khá gần” với nghiệm hầu khắp nơi hoặc nghiệm cổ điển gọi chung là nghiệm thông thường. Sau đó nhờ các công cụ của giải tích hàm, ta làm cho nghiệm dần đến nghiệm thông thường. Chính vì vậy, phương trình đạo hàm riêng còn là vấn đề rất mới mẻ và bí ẩn kích thích sự khám phá của những sinh viên yêu thích nó. Nhằm góp phần giúp những bạn sinh viên và những độc giả yêu môn phương trình đạo hàm riêng nói chung và bản thân tác giả nói riêng hiểu sâu hơn về môn học này và tiếp tục tìm hiểu khám phá, tôi mạnh dạn nghiên cứu đề tài: “Nghiên cứu tính đặt đúng của bài toán Cauchy – Dirichlet đối với phương trình parabolic cấp hai”.
2. Đối tượng, phương pháp, phạm vi nghiên cứu
2.1. Đối tượng nghiên cứu
Đối tượng nghiên cứu là bài toán biên ban đầu thứ nhất đối với phương trình parabolic cấp hai.
2.2. Phương pháp nghiên cứu
Vấn đề nghiên cứu trong luận văn là vấn đề mới đối với sinh viên bậc đại học, vì vậy phương pháp nghiên cứu chủ yếu là nghiên cứu lí thuyết cụ thể là phương
Trong quá trình hoàn thành luận văn, tôi đã được sự chỉ đạo, hướng dẫn, động viên tận tình của cô giáo: Th.S Đoàn Thị Chuyên, giảng viên khoa Toán - Lí – Tin, đồng thời nhận được sự góp ý về đề tài, tạo điều kiện thuận lợi về cơ sở vật chất, thời gian, tài liệu tham khảo của các thầy cô trong khoa Toán – Lí – Tin, phòng nghiên cứu khoa học và thư viện trường đại học Tây Bắc. Bên cạnh đó tôi còn nhận được sự động viên giúp đỡ của các bạn trong tập thể lớp K47 - đại học sư phạm Toán, sự giúp đỡ trong việc đánh máy, in ấn của tất cả bạn bè, người thân.
Nhân dịp này, cho phép tôi bày tỏ lòng biết ơn sâu sắc tới sự giúp đỡ, động viên quý báu của các thầy cô, các bạn, tới những người thân, các đơn vị liên quan, đặc biệt là cô giáo Th.S Đoàn Thị Chuyên.
Sơn La, tháng 05 năm 2010
Người thực hiện
Lê Thị Liễu
MỤC LỤC
Lời cảm ơn…………………………………………………………….………....1
Phần mở đầu……………………………………………………………………..3
1. Lí do chọn khoá luận…………………………………………………...3
2. Đối tượng, phương pháp, phạm vi nghiên cứu………………………....3
3. Mục đích, nhiệm vụ và những đóng góp của khoá luận…………….....4
Chương 1. Một số kiến thức liên quan…………………………….….…............5
1.1 Không gian Sobolev………………………………………………….……...5
1.2 Một vài không gian của các hàm...................................................................17
1.2.1 Không gian hàm H -1…………………………………………….………..17
1.2.2 Không gian phụ thuộc thời gian ……………...………………………… 18
Không gian hàm Lp(0,T;X) ………………………………………….....18
Không gian hàm C([0,T];X)………………………………….……….....18
1.3. Các bất đẳng thức………………………………………………………….19
1.3.1 Bất đẳng thức Gronwall-Bellman……………………………….………..19
1.3.2 Bất đẳng thức năng lượng……………………………………….………..19
Chương 2.Tính đặt đúng của bài toán Cauchy – Dirichlet đối với phương
trình Parabolic cấp hai……………………………………………….…….......21
2.1 Mở đầu..........................................................................................................21
2.1.1 Thiết lập bài toán........................................................................................21
2.1.2 Mô típ của định nghĩa nghiệm suy rộng.....................................................22
2.1.3 Nghiệm suy rộng........................................................................................23
2.2 Sự tồn tại duy nhất của nghiệm suy rộng......................................................25
2.2.1 Một số đánh giá tiên nghiệm......................................................................25
2.2.2 Sự tồn tại nghiệm suy rộng.... ...................................................................28
2.2.3 Tính duy nhất nghiệm suy rộng..................................................................30
Kết luận.............................................................................................................. 31
Tài liệu tham khảo:………………………………………………..……………32
PHẦN MỞ ĐẦU
1. Lí do chọn khoá luận
Trong chương trình của bậc đại học, bước đầu chúng ta đã được làm quen với môn phương trình đạo hàm riêng. Trong đó, ta đã biết được các vấn đề cơ bản liên quan đến phương trình Lapace, phương trình truyền sóng, phương trình truyền nhiệt. Đó là các phương trình đơn giản lần lượt đại diện cho ba lớp phương trình đạo hàm riêng là phương trình loại eliptic, hypebolic và parabolic. Khi học ta thấy rằng, điều kiện tồn tại nghiệm theo nghĩa thông thường thường đòi hỏi khá nhiều yếu tố khắt khe như tính trơn đến cấp của phương trình, điều này gây khó khăn khi xét các bài toán đối với các phương trình trên những miền bất kì hoặc đối với những bài toán của các phương trình tổng quát hơn. Để khắc phục điều này, thay vì đi tìm nghiệm cổ điển, người ta đi tìm nghiệm suy rộng, tức là là nghiệm “ thô” lúc đầu là nghiệm “ khá gần” với nghiệm hầu khắp nơi hoặc nghiệm cổ điển gọi chung là nghiệm thông thường. Sau đó nhờ các công cụ của giải tích hàm, ta làm cho nghiệm dần đến nghiệm thông thường. Chính vì vậy, phương trình đạo hàm riêng còn là vấn đề rất mới mẻ và bí ẩn kích thích sự khám phá của những sinh viên yêu thích nó. Nhằm góp phần giúp những bạn sinh viên và những độc giả yêu môn phương trình đạo hàm riêng nói chung và bản thân tác giả nói riêng hiểu sâu hơn về môn học này và tiếp tục tìm hiểu khám phá, tôi mạnh dạn nghiên cứu đề tài: “Nghiên cứu tính đặt đúng của bài toán Cauchy – Dirichlet đối với phương trình parabolic cấp hai”.
2. Đối tượng, phương pháp, phạm vi nghiên cứu
2.1. Đối tượng nghiên cứu
Đối tượng nghiên cứu là bài toán biên ban đầu thứ nhất đối với phương trình parabolic cấp hai.
2.2. Phương pháp nghiên cứu
Vấn đề nghiên cứu trong luận văn là vấn đề mới đối với sinh viên bậc đại học, vì vậy phương pháp nghiên cứu chủ yếu là nghiên cứu lí thuyết cụ thể là phương
* Một số tài liệu cũ có thể bị lỗi font khi hiển thị do dùng bộ mã không phải Unikey ...
Người chia sẻ: Hoàng Tuấn Anh
Dung lượng: |
Lượt tài: 0
Loại file:
Nguồn : Chưa rõ
(Tài liệu chưa được thẩm định)