MỘT SỐ BÀI TOÁN HÌNH TÍNH TOÁN HAY

Chia sẻ bởi Nguyễn Thị Anh Tú | Ngày 26/04/2019 | 104

Chia sẻ tài liệu: MỘT SỐ BÀI TOÁN HÌNH TÍNH TOÁN HAY thuộc Toán học

Nội dung tài liệu:

Trường :Cao Đẳng Sư Phạm Bình Phước
Lớp : k10 Toán Lý
Nhóm :6
Nguyển Đình Bảo
Nguyễn Thị Anh Tú
Nguyễn Thị Tình
Nguyễn văn Ninh



Sưu Tầm Và Phân Loại Một Số Bài Toán Hay :
Dạng Bài Toán Tìm Độ Dài Các Cạnh Của Tam Giác : Sử dụng bất đẳng thức tam giác .
Trong một tam giác ,tổng độ dài hai cạnh bất kì bao giờ cũng lớn hơn độ dài cạnh còn lại.
Trong một tam giác, hiệu độ dài hai cạnh bất kì bao giờ cũng nhỏ hơn độ dài cạnh còn lại.
Trong một tam giác , độ dài một cạnh bao giờ cũng lớn hơn hiệu và nhỏ hơn tổng các độ dài hai cạnh còn lại .


Đề 1: hãy tìm độ dài 3 cạnh của một tam giác , biết cạnh thứ nhất dài gấp rưỡi cạnh thứ 2 , cạnh thứ 2 dài gấp rưỡi cạnh thứ 3 và nửa chu vi tam giác bằng 9,5cm.

gt 

kl tìm :AC,AB,BC.


Giải








Gọi độ dài cạnh thứ ba là x (cm).
Theo gt : độ dài cạnh thứ 2 là (cm)
Độ dài cạnh thứ nhất là (cm)
Bất đẳng thức tam giác được thoả vì 
Chu vi của tam giác là :P =(cm)
Theo gt ta có :
Vậy độ dài ba cạnh của tam giác là :4cm ,6cm,9cm.


Mở rộng :

Đề :Một bài toán có 2 cạnh dài 2cm và 10cm. tìm số đo cạnh thứ 3 , biết rằng số đo ấy là một số nguyên tố .
Giải
Giả sử cạnh thứ 3 dài x (cm) .
Áp dụng bất đẳng thức tam giác trong tam giác tao có :

Vì x là số nguyên tố lớn hơn 8 va nhỏ hơn 12 nên x = 11.
Vậy số đo cạnh thứ 3 là 11cm.

Kết Luận :Sử dụng bất đẳng thức tam giác vào việc chứng minh một số bài toán trong tam giác như tìm độ dài các cạnh của tam giác ,hay chúng minh độ dài các cạnh tạo thành một tam giác .

Tìm Số Đo Các Góc :Sử dụng tính chất ba đường trung trực .
Lý Thuyết :
Đường Trung Trực Của Tam Giác :trong một tam giác đường trung trực của một cạnh gọi là đường trung trực của tam giác đó . Mỗt tam giác có ba đường trung trực
Chú Ý: Trong một tam giác cân . đường trung trực của cạnh đáy dống thời là đường trung tuyến ứng với cạnh này .
Tính Chất Ba Đường Trung Trực Của Tam Giác : Ba đường trung trực của tam giác cũng đi qua một điểm . Điểm này cách đều ba đỉnh của tam giác đó .
Chú Ý :Vì giao điểm O của ba đường trung trực của tam giác ABC cách đều ba đỉnh của tam giác đó nên có một đường tròn tâm Ođi qua ba đỉnh A.B,C. Đó là đường trong ngoại tiếp tam giác ABC.
BÁI TOÁN :
Cho tam giác ABC và đường phân giác AK của góc A . Biết rằng ba điểm của ba đường phân giáccủa tam giác ABK trùng với giao điểm ba đường trung trực của tam giác ABC tìm số đo các góc của tam giác ABC.















giải

Gọi O là giao điểm của ba đường phân giác của ABK. Theo đề bài ,O là giao điểm của ba đường trung trực của ABC.
Vậy OA = OB = OC và các tam giác AOB, BOC,COA đều là các tam giác cân đỉnh O.
Gọi thì và  . vì AK là đường phân giác của góc BAC nên nếu thì  .
ta có :  nên suy ra AB = CB .
Vậy  là tam giác cân đỉnh B.

Tổng ba góc của một tam giác bằng .
 2a +4a +4a = .
Vậy số đo các góc của ABC là :
















* Một số tài liệu cũ có thể bị lỗi font khi hiển thị do dùng bộ mã không phải Unikey ...

Người chia sẻ: Nguyễn Thị Anh Tú
Dung lượng: | Lượt tài: 1
Loại file:
Nguồn : Chưa rõ
(Tài liệu chưa được thẩm định)