HSG CHUYÊN A01
Chia sẻ bởi Đỗ Văn Bình |
Ngày 26/04/2019 |
36
Chia sẻ tài liệu: HSG CHUYÊN A01 thuộc Tiếng Anh 11
Nội dung tài liệu:
TRƯỜNG THPT CHUYÊN VĨNH PHÚC KỲ THI THỬ ĐẠI HỌC, LẦN II NĂM HỌC 2013-2014
Môn: Toán - Khối A-A.
Thời gian làm bài: 180 phút (Không kể thời gian giao đề)
I. PHẦN CHUNG CHO TẤT CẢ THÍ SINH (7,0 điểm)
Câu 1 (2,0 điểm). Cho hàm số có đồ thị .
Khảo sát sự biến thiên và vẽ đồ thị của hàm số.
Tìm các giá trị để đường thẳng cắt đồ thị tại và sao cho trọng tâm của tam giác thuộc đường thẳng ( là gốc toạ độ )
Câu 2 (1,0 điểm). Giải phương trình :
Câu 3 (1,0 điểm). Giải hệ phương trình: .
Câu 4 (1,0 điểm). Tính tích phân : .
Câu 5 (1,0 điểm). Cho hình chóp có vuông góc với mặt phẳng và đáy là hình chữ nhật ; . Gọi là trung điểm của , là giao điểm của và , là hình chiếu vuông góc của lên .Biết góc giữa và mặt phẳng là , với .Tính thể tích khối chóp và khoảng cách từ đến mặt phẳng .
Câu 6 (1,0 điểm). Cho là các số thực dương . Tìm giá trị lớn nhất của biểu thức
II. PHẦN RIÊNG (3,0 điểm). Thí sinh chỉ được làm một trong hai phần (phần A hoặc B)
A. Theo chương trình Chuẩn.
Câu 7.a (1,0 điểm). Trong mặt phẳng với hệ tọa độ , cho hai điểm và đường thẳng,Viết phương trình đường tròn đi qua hai điểm và cắt đường thẳng tại hai điểm phân biệt sao cho .
Câu 8.a (1,0 điểm). Trong không gian với hệ toạ độ,cho ,. Viết phương trình mặt phẳng đi qua sao cho các khoảng cách từ và đến bằng nhau .
Câu 9.a (1,0 điểm). Tìm số phức thoả mãn và
B. Theo chương trình Nâng cao.
Câu 7.b (1,0 điểm). Trong mặt phẳng với hệ tọa độ , cho các điểm . Tìm toạ độ điểm sao cho và khoảng cách từ đên đường thẳng bằng .
Câu 8.b (1,0 điểm). Trong không gian với hệ toạ độcho các điểm . Viết phương trình mặt phẳng đi qua sao cho cắt các trục lần lượt tại và thể tích khối tứ diện bằng
Câu 9.b (1,0 điểm).Tìm số phức thoả mãn :
---------- HẾT ----------
TRƯỜNG THPT CHUYÊN VĨNH PHÚC KỲ THI THỬ ĐẠI HỌC, LẦN VI NĂM HỌC 2013-2014
Môn: Toán - Khối A-A.
Thời gian làm bài: 180 phút (Không kể thời gian giao đề)
I/ Đáp án
Câu
Đáp án
Điểm
Câu 1
(2 điểm)
Câu 1 (2,0 điểm). Cho hàm số có đồ thị .
1.Khảo sát sự biến thiên và vẽ đồ thị của hàm số.
Tập xác định là .
0.25
Sự biến thiên
+
Hàm số nghịch biến trên các khoảng : và
+Giới hạn và tiệm cận: đ thẳng là tiệm cận đứng
đ thẳng là tiệm cận ngang
0.25
Bảng biến thiên:
x
1
y’
- -
y
2
2
0.25
Đồ thị: Học sinh tự vẽ
0.25
2.Tìm các giá trị để đường thẳng cắt đồ thị tại và sao cho trọng tâm của tam giác thuộc đường thẳng ( là gốc toạ độ )
P trình hoành độ giao điểm:
0.25
cắt đồ thị tại và có hai nghiệm phân biệt khác
0.25
Gọi là nghiệm của . Khi đó . Gọi là trọng tâm tam giác
0.25
không thoả mãn .Vậy không tồn tại thỏa mãn yêu cầu bài toán.
0.25
Câu 2
(1 điểm)
Giải phương trình :
Đ/K
Phương trình
0.25
0.25
( Thoả mãn điều kiện )
0,25
Môn: Toán - Khối A-A.
Thời gian làm bài: 180 phút (Không kể thời gian giao đề)
I. PHẦN CHUNG CHO TẤT CẢ THÍ SINH (7,0 điểm)
Câu 1 (2,0 điểm). Cho hàm số có đồ thị .
Khảo sát sự biến thiên và vẽ đồ thị của hàm số.
Tìm các giá trị để đường thẳng cắt đồ thị tại và sao cho trọng tâm của tam giác thuộc đường thẳng ( là gốc toạ độ )
Câu 2 (1,0 điểm). Giải phương trình :
Câu 3 (1,0 điểm). Giải hệ phương trình: .
Câu 4 (1,0 điểm). Tính tích phân : .
Câu 5 (1,0 điểm). Cho hình chóp có vuông góc với mặt phẳng và đáy là hình chữ nhật ; . Gọi là trung điểm của , là giao điểm của và , là hình chiếu vuông góc của lên .Biết góc giữa và mặt phẳng là , với .Tính thể tích khối chóp và khoảng cách từ đến mặt phẳng .
Câu 6 (1,0 điểm). Cho là các số thực dương . Tìm giá trị lớn nhất của biểu thức
II. PHẦN RIÊNG (3,0 điểm). Thí sinh chỉ được làm một trong hai phần (phần A hoặc B)
A. Theo chương trình Chuẩn.
Câu 7.a (1,0 điểm). Trong mặt phẳng với hệ tọa độ , cho hai điểm và đường thẳng,Viết phương trình đường tròn đi qua hai điểm và cắt đường thẳng tại hai điểm phân biệt sao cho .
Câu 8.a (1,0 điểm). Trong không gian với hệ toạ độ,cho ,. Viết phương trình mặt phẳng đi qua sao cho các khoảng cách từ và đến bằng nhau .
Câu 9.a (1,0 điểm). Tìm số phức thoả mãn và
B. Theo chương trình Nâng cao.
Câu 7.b (1,0 điểm). Trong mặt phẳng với hệ tọa độ , cho các điểm . Tìm toạ độ điểm sao cho và khoảng cách từ đên đường thẳng bằng .
Câu 8.b (1,0 điểm). Trong không gian với hệ toạ độcho các điểm . Viết phương trình mặt phẳng đi qua sao cho cắt các trục lần lượt tại và thể tích khối tứ diện bằng
Câu 9.b (1,0 điểm).Tìm số phức thoả mãn :
---------- HẾT ----------
TRƯỜNG THPT CHUYÊN VĨNH PHÚC KỲ THI THỬ ĐẠI HỌC, LẦN VI NĂM HỌC 2013-2014
Môn: Toán - Khối A-A.
Thời gian làm bài: 180 phút (Không kể thời gian giao đề)
I/ Đáp án
Câu
Đáp án
Điểm
Câu 1
(2 điểm)
Câu 1 (2,0 điểm). Cho hàm số có đồ thị .
1.Khảo sát sự biến thiên và vẽ đồ thị của hàm số.
Tập xác định là .
0.25
Sự biến thiên
+
Hàm số nghịch biến trên các khoảng : và
+Giới hạn và tiệm cận: đ thẳng là tiệm cận đứng
đ thẳng là tiệm cận ngang
0.25
Bảng biến thiên:
x
1
y’
- -
y
2
2
0.25
Đồ thị: Học sinh tự vẽ
0.25
2.Tìm các giá trị để đường thẳng cắt đồ thị tại và sao cho trọng tâm của tam giác thuộc đường thẳng ( là gốc toạ độ )
P trình hoành độ giao điểm:
0.25
cắt đồ thị tại và có hai nghiệm phân biệt khác
0.25
Gọi là nghiệm của . Khi đó . Gọi là trọng tâm tam giác
0.25
không thoả mãn .Vậy không tồn tại thỏa mãn yêu cầu bài toán.
0.25
Câu 2
(1 điểm)
Giải phương trình :
Đ/K
Phương trình
0.25
0.25
( Thoả mãn điều kiện )
0,25
* Một số tài liệu cũ có thể bị lỗi font khi hiển thị do dùng bộ mã không phải Unikey ...
Người chia sẻ: Đỗ Văn Bình
Dung lượng: |
Lượt tài: 1
Loại file:
Nguồn : Chưa rõ
(Tài liệu chưa được thẩm định)