GT toán rời rạc - Chương 6

Chia sẻ bởi Vũ Ngọc Vinh | Ngày 26/04/2019 | 81

Chia sẻ tài liệu: GT toán rời rạc - Chương 6 thuộc Toán học

Nội dung tài liệu:

CHƯƠNG VI
CÂY

Một đồ thị liên thông và không có chu trình được gọi là cây. Cây đã được dùng từ năm 1857, khi nhà toán học Anh tên là Arthur Cayley dùng cây để xác định những dạng khác nhau của hợp chất hoá học. Từ đó cây đã được dùng để giải nhiều bài toán trong nhiều lĩnh vực khác nhau. Cây rất hay được sử dụng trong tin học. Chẳng hạn, người ta dùng cây để xây dựng các thuật toán rất có hiệu quả để định vị các phần tử trong một danh sách. Cây cũng dùng để xây dựng các mạng máy tính với chi phí rẻ nhất cho các đường điện thoại nối các máy phân tán. Cây cũng được dùng để tạo ra các mã có hiệu quả để lưu trữ và truyền dữ liệu. Dùng cây có thể mô hình các thủ tục mà để thi hành nó cần dùng một dãy các quyết định. Vì vậy cây đặc biệt có giá trị khi nghiên cứu các thuật toán sắp xếp.
6.1. ĐỊNH NGHĨA VÀ CÁC TÍNH CHẤT CƠ BẢN.
6.1.1. Định nghĩa: Cây là một đồ thị vô hướng liên thông, không chứa chu trình và có ít nhất hai đỉnh.
Một đồ thị vô hướng không chứa chu trình và có ít nhất hai đỉnh gọi là một rừng. Trong một rừng, mỗi thành phần liên thông là một cây.
Thí dụ 1: Rừng sau có 3 cây:





6.1.2. Mệnh đề: Nếu T là một cây có n đỉnh thì T có ít nhất hai đỉnh treo.
Chứng minh: Lấy một cạnh (a,b) tuỳ ý của cây T. Trong tập hợp các đường đi sơ cấp chứa cạnh (a,b), ta lấy đường đi từ u đến v dài nhất. Vì T là một cây nên u ( v. Mặt khác, u và v phải là hai đỉnh treo, vì nếu một đỉnh, u chẳng hạn, không phải là đỉnh treo thì u phải là đầu mút của một cạnh (u,x), với x là đỉnh không thuộc đường đi từ u đến v. Do đó, đường đi sơ cấp từ x đến v, chứa cạnh (a,b), dài hơn đường đi từ u đến v, trái với tính chất đường đi từ u đến v đã chọn.
6.1.3. Định lý: Cho T là một đồ thị có n ( 2 đỉnh. Các điều sau là tương đương:
1) T là một cây.
2) T liên thông và có n(1 cạnh.
3) T không chứa chu trình và có n(1 cạnh.
4) T liên thông và mỗi cạnh là cầu.
5) Giữa hai đỉnh phân biệt bất kỳ của T luôn có duy nhất một đường đi sơ cấp.
6) T không chứa chu trình nhưng khi thêm một cạnh mới thì có được một chu trình duy nhất.
Chứng minh: 1)(2) Chỉ cần chứng minh rằng một cây có n đỉnh thì có n(1 cạnh. Ta chứng minh bằng quy nạp. Điều này hiển nhiên khi n=2. Giả sử cây có k đỉnh thì có k(1 cạnh, ta chứng minh rằng cây T có k+1 đỉnh thì có k cạnh. Thật vậy, trong T nếu ta xoá một đỉnh treo và cạnh treo tương ứng thì đồ thị nhận được là một cây k đỉnh, cây này có k(1 cạnh, theo giả thiết quy nạp. Vậy cây T có k cạnh.
2)(3) Nếu T có chu trình thì bỏ đi một cạnh trong chu trình này thì T vẫn liên thông. Làm lại như thế cho đến khi trong T không còn chu trình nào mà vẫn liên thông, lúc đó ta được một cây có n đỉnh nhưng có ít hơn n(1 cạnh, trái với 2).
3)(4) Nếu T có k thành phần liên thông T1, ..., Tk lần lượt có số đỉnh là n1, ..., nk (với n1+n2+ ( +nk=n) thì mỗi Ti là một cây nên nó có số cạnh là ni(1. Vậy ta có
n(1=(n1(1)+(n2(1)+ ... +(nk(1)=(n1+n2+ ( +nk)(k=n(k.
Do đó k=1 hay T liên thông. Hơn nữa, khi bỏ đi một cạnh thì T hết liên thông, vì nếu còn liên thông thì T là một cây n đỉnh với n(2 cạnh, trái với điều đã chứng minh ở trên.
4)(5) Vì T liên thông nên giữa hai đỉnh phân biệt bất kỳ của T luôn có một đường đi sơ cấp, nhưng không thể được nối bởi hai đường đi sơ cấp vì nếu thế, hai đường đó sẽ tạo ra một chu trình và khi bỏ một cạnh thuộc chu trình này, T vẫn liên thông, trái với giả thiết.
5)(6) Nếu T chứa một chu trình thì hai đỉnh
* Một số tài liệu cũ có thể bị lỗi font khi hiển thị do dùng bộ mã không phải Unikey ...

Người chia sẻ: Vũ Ngọc Vinh
Dung lượng: | Lượt tài: 1
Loại file:
Nguồn : Chưa rõ
(Tài liệu chưa được thẩm định)