GT toán rời rạc - Chương 4

Chia sẻ bởi Vũ Ngọc Vinh | Ngày 26/04/2019 | 77

Chia sẻ tài liệu: GT toán rời rạc - Chương 4 thuộc Toán học

Nội dung tài liệu:

CHƯƠNG IV
ĐỒ THỊ EULER VÀ ĐỒ THỊ HAMILTON

4.1. ĐƯỜNG ĐI EULER VÀ ĐỒ THỊ EULER.
Có thể coi năm 1736 là năm khai sinh lý thuyết đồ thị, với việc công bố lời giải “bài toán về các cầu ở Konigsberg” của nhà toán học lỗi lạc Euler (1707-1783). Thành phố Konigsberg thuộc Phổ (nay gọi là Kaliningrad thuộc Nga) được chia thành bốn vùng bằng các nhánh sông Pregel, các vùng này gồm hai vùng bên bờ sông, đảo Kneiphof và một miền nằm giữa hai nhánh của sông Pregel. Vào thế kỷ 18, người ta xây bảy chiếc cầu nối các vùng này với nhau.






G
Dân thành phố từng thắc mắc: “Có thể nào đi dạo qua tất cả bảy cầu, mỗi cầu chỉ một lần thôi không?”. Nếu ta coi mỗi khu vực A, B, C, D như một đỉnh và mỗi cầu qua lại hai khu vực là một cạnh nối hai đỉnh thì ta có sơ đồ của Konigsberg là một đa đồ thị G như hình trên.
Bài toán tìm đường đi qua tất cả các cầu, mỗi cầu chỉ qua một lần có thể được phát biểu lại bằng mô hình này như sau: Có tồn tại chu trình đơn trong đa đồ thị G chứa tất cả các cạnh?
4.1.1. Định nghĩa: Chu trình (t.ư. đường đi) đơn chứa tất cả các cạnh (hoặc cung) của đồ thị (vô hướng hoặc có hướng) G được gọi là chu trình (t.ư. đường đi) Euler. Một đồ thị liên thông (liên thông yếu đối với đồ thị có hướng) có chứa một chu trình (t.ư. đường đi) Euler được gọi là đồ thị Euler (t.ư. nửa Euler).
Thí dụ 1:





Đồ thị không nửa Euler
Đồ thị nửa Euler








Đồ thị Euler Đồ thị nửa Euler
Điều kiện cần và đủ để một đồ thị là đồ thị Euler được Euler tìm ra vào năm 1736 khi ông giải quyết bài toán hóc búa nổi tiếng thời đó về bảy cái cầu ở Konigsberg và đây là định lý đầu tiên của lý thuyết đồ thị.
4.1.2. Định lý: Đồ thị (vô hướng) liên thông G là đồ thị Euler khi và chỉ khi mọi đỉnh của G đều có bậc chẵn.
Chứng minh:
Điều kiện cần: Giả sử G là đồ thị Euler, tức là tồn tại chu trình Euler P trong G. Khi đó cứ mỗi lần chu trình P đi qua một đỉnh nào đó của G thì bậc của đỉnh đó tăng lên 2. Mặt khác, mỗi cạnh của đồ thị xuất hiện trong P đúng một lần. Do đó mỗi đỉnh của đồ thị đều có bậc chẵn.
4.1.3. Bổ đề: Nếu bậc của mỗi đỉnh của đồ thị G không nhỏ hơn 2 thì G chứa chu trình đơn.
Chứng minh: Nếu G có cạnh bội hoặc có khuyên thì khẳng định của bổ đề là hiển nhiên. Vì vậy giả sử G là một đơn đồ thị. Gọi v là một đỉnh nào đó của G. Ta sẽ xây dựng theo quy nạp đường đi

trong đó v1 là đỉnh kề với v, còn với i ( 1, chọn vi+1 là đỉnh kề với vi và vi+1 ( vi-1 (có thể chọn như vậy vì deg(vi) ( 2), v0 = v. Do tập đỉnh của G là hữu hạn, nên sau một số hữu hạn bước ta phải quay lại một đỉnh đã xuất hiện trước đó. Gọi k là số nguyên dương đầu tiên để vk=vi (0(iĐiều kiện đủ: Quy nạp theo số cạnh của G. Do G liên thông và bậc của mọi đỉnh là chẵn nên mỗi đỉnh có bậc không nhỏ hơn 2. Từ đó theo Bổ đề 4.1.3, G phải chứa một chu trình đơn C. Nếu C đi qua tất cả các cạnh của G thì nó chính là chu trình Euler. Giả sử C không đi qua tất cả các cạnh của G. Khi đó loại bỏ khỏi G các cạnh thuộc C, ta thu được một đồ thị mới H (không nhất thiết là liên thông). Số cạnh trong H nhỏ hơn trong G và rõ ràng mỗi đỉnh của H vẫn có bậc là chẵn. Theo giả thiết quy nạp, trong mỗi thành phần liên thông của H đều tìm được chu trình Euler. Do G liên thông nên mỗi thành phần trong H có ít nhất một đỉnh chung với chu trình C. Vì vậy, ta có thể xây dựng chu trình Euler trong G như sau:








Bắt đầu từ một đỉnh nào đó của chu trình C, đi theo
* Một số tài liệu cũ có thể bị lỗi font khi hiển thị do dùng bộ mã không phải Unikey ...

Người chia sẻ: Vũ Ngọc Vinh
Dung lượng: | Lượt tài: 2
Loại file:
Nguồn : Chưa rõ
(Tài liệu chưa được thẩm định)