Đi tìm giấy khai sinh cho số O
Chia sẻ bởi Phạm Huy Hoạt |
Ngày 14/10/2018 |
109
Chia sẻ tài liệu: Đi tìm giấy khai sinh cho số O thuộc Các công cụ toán học
Nội dung tài liệu:
Đi tìm
Trải qua một thời gian dài dằng dặc mười mấy ngàn năm kể từ xã hội nguyên thuỷ thuộc kỷ Paleolithic đến các thời kỳ văn hoá cổ đại rực rỡ nhất như văn hoá Hy-La, văn hoá Hebrew (Do-thái), văn hoá cổ Trung Hoa, mặc dù số học đã phát triển tới trình độ rất cao, rất phức tạp nhưng vẫn chưa thể nào sản sinh ra số 0!
Trong các chữ số của người Trung Hoa gồm nhất (1), nhị (2), tam (3), tứ (4), ngũ (5), lục (6), thất (7), bát (8), cửu (9), thập (10), bách (100), thiên (1000), hoặc của người La Mã gồm I (1), V (5), X (10), L (50), C (100), D (500), M (1000 hoặc 1000000), hoặc của người Do Thái gồm aleph (1), beth (2), gimel (3),... hoặc của người Hy Lạp gồm alpha (α = 1), beta (β = 2), gamma (γ = 3),... tất cả đều vắng bóng số 0!
Xem thế đủ biết việc sáng tạo ra số 0 khó khăn đến nhường nào, và không có gì để ngạc nhiên khi các nhà nghiên cứu lịch sử khoa học đều nhất trí đánh giá rằng việc phát minh ra số 0 là một trong những cột mốc vĩ đại nhất trong lịch sử VĂN HÓA NHÂN LOẠI.
Ai đã , nơi nào đã sản sunh ra số “O”.?
I.-CÁI KHÔNG CỦA NGƯỜI ẤN CỔ ĐẠI
Sunya, hay Sunyata, là một từ cổ Ấn Độ, có nghĩa là Zero, tức số 0. Trong dãy chữ số thập phân, 0 và 1 đứng cạnh nhau, nhưng từ 1 đến 0 lại là cả một hành trình vĩ đại của tư duy.
LẬT TRONG LICH SỬ TOÁN HỌC , sau số 1 phải đợi một thời gian dài đằng đẵng hơn 15 thiên niên kỷ, số 0 mới có thể ra đời tại Ấn Độ! “Cơn đau đẻ vật vã” này là kết quả của sự “hôn phối” giữa bà mẹ toán học với ông bố triết học – những tư tưởng thâm thuý sâu xa, trừu tượng và cao siêu của Cái Không (The Nothingness) mà trong quá khứ dường như chỉ xứ Ấn Độ mới có. Cái Không ấy đã được Denis Guedj, giáo sư lịch sử khoa học tại Đại học Paris, diễn đạt tóm tắt trong cuốn “Số – Ngôn ngữ phổ quát” bằng câu nói hiện đại như sau: “Số 0 là cái chẳng có gì nhưng lại làm nên mọi thứ”.
Nhưng tưởng cần phải hỏi tại sao một Sunya vốn cao siêu trừu tượng như thế mà ngày nay lại trở nên đơn giản, thông dụng và quen thuộc với mọi người như thế ? Công lao phổ cập cái cao siêu trừu tượng này thuộc về ai- Người đẻ ra số “0” - , nếu không thuộc về các nhà giáo dục thông thái hàng ngàn năm qua đã chú tâm truyền bá ý nghĩa cụ thể và ứng dụng của nó, thay vì thổi phồng ý nghĩa triết học cao siêu để làm khổ học trò?
Vì thế, lịch sử của Sunya rất đáng được chú ý nghiên cứu học hỏi, để từ đó rút ra những bài học bổ ích nhằm suy tôn tinh thần hiện thực và cụ thể trong giảng dạy toán học ở trường phổ thông.
1.1* Hành trình của Sunya:
Ba con số tạo nên nền tảng của hệ thống số là số 0, số 1, và số vô cùng (∞). Việc tìm hiểu sự hình thành một hệ thống số phải bắt đầu từ 1, vì 1 là khởi thuỷ của mọi con số.
Dấu hiệu cổ xưa nhất về các con số trong những nền văn minh đầu tiên của loài người mà hiện nay khoa khảo cổ học đã nắm được trong tay là những vạch đếm được khắc trên sừng hươu thuộc kỷ Paleolithic, thuộc niên đại khoảng 15000 năm trước C.N. Di tích này có 2 ý nghĩa: Một, nó cho biết tuổi của toán học; Hai, nó khẳng định toán học ra đời từ nhu cầu đếm. Việc đếm hiển nhiên phải bắt đầu từ 1. Vì thế, 1 từng được Pythagoras coi là biểu tượng của Thượng Đế – cái bắt đầu của mọi sự. Về mặt triết học, 1 có nghĩa là tồn tại, hiện hữu. 1 còn có ý nghĩa là đơn vị, nhiều đơn vị gộp lại thành số nhiều. Nếu số nhiều này là hữu hạn thì nó được gọi là arithmos. Việc nghiên cứu arithmos được gọi là arithmetics, tức số học. Điều đáng kinh ngạc là trải qua một thời gian dài dằng dặc mười mấy ngàn năm kể từ xã hội nguyên thuỷ thuộc kỷ Paleolithic đến các thời kỳ văn hoá cổ đại rực rỡ nhất như văn hoá Hy-La, văn hoá Hebrew (Do-thái), văn hoá cổ Trung Hoa, mặc dù số học đã phát triển tới trình độ rất cao, rất phức tạp nhưngvẫn chưa thể nào sản sinh ra
* Một số tài liệu cũ có thể bị lỗi font khi hiển thị do dùng bộ mã không phải Unikey ...
Người chia sẻ: Phạm Huy Hoạt
Dung lượng: 1,23MB|
Lượt tài: 4
Loại file: rar
Nguồn : Chưa rõ
(Tài liệu chưa được thẩm định)